Abstract
The enormous evolution of positioning technologies and remote sensors is leading to big amounts of disparate mobility data. Collected mobility data generates the need of modelling of such behaviour and the understanding of them which gave the rise of different models achieved either by classical conceptual modelling or by those based on ontology. Modelling and analysing trajectory data are still challenging because of the heterogeneity of trajectory data models and the complexity of establishing choices about domain’s consensual knowledge. To fulfil this objective, we propose a generic ontology that explains the semantics of these data and we define a trajectory data warehouse conceptual model based on the shared ontology in order to analyse trajectory data going from users’ short transactions to complex queries involving decision makers. The shared ontology that we propose is an OWL-DL formalism that covers common structures encountered in trajectories. We illustrate our work with a real case study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baglioni, M., de Macêdo, J.A.F., Renso, C., Wachowicz, M.: An ontology-based approach for the semantic modelling and reasoning on trajectories. In: ER Workshops, pp. 344–353 (2008)
Bellatreche, L., Dung, N.X., Pierra, G., Hondjack, D.: Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases. Comput. Ind. 57(8), 711–724 (2006)
Braz, F.J.: Trajectory data warehouses: Proposal of design and application to exploit data. In: GeoInfo, pp. 61–72 (2007)
Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data modeling. In: Logics for Databases and Information Systems, pp. 229–263 (1998)
Diamantini, C., Potena, D.: Semantic enrichment of strategic datacubes. In: ACM 11th International Workshop on Data Warehousing and OLAP, DOLAP, Napa Valley, California, USA, pp. 81–88 (2008)
Khouri, S., Boukhari, I., Bellatreche, L., Sardet, E., Jean, S., Baron, M.: Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool. Comput. Ind. 63(8), 799–812 (2012)
Leonardi, L., Orlando, S., Raffaetà, A., Roncato, A., Silvestri, C., Andrienko, G., Andrienko, N.: A general framework for trajectory data warehousing and visual OLAP. GeoInformatica 18(2), 273–312 (2014)
Majecka, B.: Statistical models of pedestrian behaviour in the Forum. Ph.D. thesis, University of Edinburgh (2009)
Manaa, M., Akaichi, J.: Unifying mobility data warehouse models using UMLprofile. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) 2014 10th InternationalConference on Beyond Databases, Architectures, and Structures, 82–91. CCIS, vol. 424, pp. 82–91. Springer, Heidelberg (2014)
Martinez, J.M.P., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: Integrating data warehouses with web data: A survey. IEEE Trans. Knowl. Data Eng. 20(7), 940–955 (2008)
Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decis. Support Syst. 52(4), 853–868 (2012)
Niinimäki, M., Niemi, T.: An ETL process for OLAP using RDF/OWL ontologies. In: Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 97–119. Springer, Heidelberg (2009)
Pelekis, N., Theodoridis, Y., Vosinakis, S., Panayiotopoulos, T.: Hermes - A framework for location-based data management. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1130–1134. Springer, Heidelberg (2006)
Pierra, G.: Context representation in domain ontologies and its use for semantic integration of data. J. Data Semant. 10, 174–211 (2008)
Romero, O., Abelló, A.: A framework for multidimensional design of data warehouses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)
Sakouhi, T., Akaichi, J., Malki, J., Bouju, A., Wannous, R.: Inference on semantic trajectory data warehouse using an ontological approach. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 466–475. Springer, Heidelberg (2014)
Campora, S., Fernandes, J.A., de Macedo, L.S.: St-toolkit: A framework for trajectory data warehousing. In: AGILE, pp. 18–22 (2011)
Tryfona, N., Price, R., Jensen, C.S.: Conceptual models for spatio-temporal applications. In: Spatio-Temporal Databases: The CHOROCHRONOS Approach, pp. 79–116 (2003)
Wagner, R., de Macêdo, J.A.F., Raffaetà, A., Renso, C., Roncato, A., Trasarti, R.: Mob-warehouse: A semantic approach for mobility analysis with a trajectory data warehouse. In: Advances in Conceptual Modeling - ER 2013 Workshops, Hong Kong, China, 11–13 November 2013, pp. 127–136 (2013)
Wannous, R., Malki, J., Bouju, A., Vincent, C.: Modelling mobile object activities based on trajectory ontology rules considering spatial relationship rules. In: Amine, A., Mohamed, O.A., Bellatreche, L. (eds.) Modeling Approaches and Algorithms. SCI, vol. 488, pp. 249–258. Springer, Heidelberg (2013)
Xu, J., Güting, R.H.: A generic data model for moving objects. GeoInformatica 17(1), 125–172 (2013)
Yan, Z., Chakraborty, D.: Semantics in Mobile Sensing. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers, San Rafel (2014)
Zimányi, E.: Spatio-temporal data warehouses and mobility data: Current status and research issues. In: 19th International Symposium on Temporal Representation and Reasoning, TIME 2012, Leicester, United Kingdom, September 12–14, 2012, pp. 6–9 (2012)
Acknowledgements
The authors would like to thank the creator of the dataset Barbara Majecka as part of her MSc projects [8].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Manaa, M., Akaichi, J. (2016). Ontology-Based Trajectory Data Warehouse Conceptual Model. In: Madria, S., Hara, T. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2016. Lecture Notes in Computer Science(), vol 9829. Springer, Cham. https://doi.org/10.1007/978-3-319-43946-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-43946-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43945-7
Online ISBN: 978-3-319-43946-4
eBook Packages: Computer ScienceComputer Science (R0)