Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ontology-Based Trajectory Data Warehouse Conceptual Model

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9829))

Included in the following conference series:

Abstract

The enormous evolution of positioning technologies and remote sensors is leading to big amounts of disparate mobility data. Collected mobility data generates the need of modelling of such behaviour and the understanding of them which gave the rise of different models achieved either by classical conceptual modelling or by those based on ontology. Modelling and analysing trajectory data are still challenging because of the heterogeneity of trajectory data models and the complexity of establishing choices about domain’s consensual knowledge. To fulfil this objective, we propose a generic ontology that explains the semantics of these data and we define a trajectory data warehouse conceptual model based on the shared ontology in order to analyse trajectory data going from users’ short transactions to complex queries involving decision makers. The shared ontology that we propose is an OWL-DL formalism that covers common structures encountered in trajectories. We illustrate our work with a real case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.w3.org/TR/owl-time/.

  2. 2.

    http://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/.

  3. 3.

    http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/.

References

  1. Baglioni, M., de Macêdo, J.A.F., Renso, C., Wachowicz, M.: An ontology-based approach for the semantic modelling and reasoning on trajectories. In: ER Workshops, pp. 344–353 (2008)

    Google Scholar 

  2. Bellatreche, L., Dung, N.X., Pierra, G., Hondjack, D.: Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases. Comput. Ind. 57(8), 711–724 (2006)

    Article  Google Scholar 

  3. Braz, F.J.: Trajectory data warehouses: Proposal of design and application to exploit data. In: GeoInfo, pp. 61–72 (2007)

    Google Scholar 

  4. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data modeling. In: Logics for Databases and Information Systems, pp. 229–263 (1998)

    Google Scholar 

  5. Diamantini, C., Potena, D.: Semantic enrichment of strategic datacubes. In: ACM 11th International Workshop on Data Warehousing and OLAP, DOLAP, Napa Valley, California, USA, pp. 81–88 (2008)

    Google Scholar 

  6. Khouri, S., Boukhari, I., Bellatreche, L., Sardet, E., Jean, S., Baron, M.: Ontology-based structured web data warehouses for sustainable interoperability: requirement modeling, design methodology and tool. Comput. Ind. 63(8), 799–812 (2012)

    Article  Google Scholar 

  7. Leonardi, L., Orlando, S., Raffaetà, A., Roncato, A., Silvestri, C., Andrienko, G., Andrienko, N.: A general framework for trajectory data warehousing and visual OLAP. GeoInformatica 18(2), 273–312 (2014)

    Article  Google Scholar 

  8. Majecka, B.: Statistical models of pedestrian behaviour in the Forum. Ph.D. thesis, University of Edinburgh (2009)

    Google Scholar 

  9. Manaa, M., Akaichi, J.: Unifying mobility data warehouse models using UMLprofile. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) 2014 10th InternationalConference on Beyond Databases, Architectures, and Structures, 82–91. CCIS, vol. 424, pp. 82–91. Springer, Heidelberg (2014)

    Google Scholar 

  10. Martinez, J.M.P., Berlanga, R., Aramburu, M.J., Pedersen, T.B.: Integrating data warehouses with web data: A survey. IEEE Trans. Knowl. Data Eng. 20(7), 940–955 (2008)

    Article  Google Scholar 

  11. Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decis. Support Syst. 52(4), 853–868 (2012)

    Article  Google Scholar 

  12. Niinimäki, M., Niemi, T.: An ETL process for OLAP using RDF/OWL ontologies. In: Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 97–119. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Pelekis, N., Theodoridis, Y., Vosinakis, S., Panayiotopoulos, T.: Hermes - A framework for location-based data management. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1130–1134. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Pierra, G.: Context representation in domain ontologies and its use for semantic integration of data. J. Data Semant. 10, 174–211 (2008)

    MATH  Google Scholar 

  15. Romero, O., Abelló, A.: A framework for multidimensional design of data warehouses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)

    Article  Google Scholar 

  16. Sakouhi, T., Akaichi, J., Malki, J., Bouju, A., Wannous, R.: Inference on semantic trajectory data warehouse using an ontological approach. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 466–475. Springer, Heidelberg (2014)

    Google Scholar 

  17. Campora, S., Fernandes, J.A., de Macedo, L.S.: St-toolkit: A framework for trajectory data warehousing. In: AGILE, pp. 18–22 (2011)

    Google Scholar 

  18. Tryfona, N., Price, R., Jensen, C.S.: Conceptual models for spatio-temporal applications. In: Spatio-Temporal Databases: The CHOROCHRONOS Approach, pp. 79–116 (2003)

    Google Scholar 

  19. Wagner, R., de Macêdo, J.A.F., Raffaetà, A., Renso, C., Roncato, A., Trasarti, R.: Mob-warehouse: A semantic approach for mobility analysis with a trajectory data warehouse. In: Advances in Conceptual Modeling - ER 2013 Workshops, Hong Kong, China, 11–13 November 2013, pp. 127–136 (2013)

    Google Scholar 

  20. Wannous, R., Malki, J., Bouju, A., Vincent, C.: Modelling mobile object activities based on trajectory ontology rules considering spatial relationship rules. In: Amine, A., Mohamed, O.A., Bellatreche, L. (eds.) Modeling Approaches and Algorithms. SCI, vol. 488, pp. 249–258. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Xu, J., Güting, R.H.: A generic data model for moving objects. GeoInformatica 17(1), 125–172 (2013)

    Article  Google Scholar 

  22. Yan, Z., Chakraborty, D.: Semantics in Mobile Sensing. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers, San Rafel (2014)

    Google Scholar 

  23. Zimányi, E.: Spatio-temporal data warehouses and mobility data: Current status and research issues. In: 19th International Symposium on Temporal Representation and Reasoning, TIME 2012, Leicester, United Kingdom, September 12–14, 2012, pp. 6–9 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the creator of the dataset Barbara Majecka as part of her MSc projects [8].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Manaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Manaa, M., Akaichi, J. (2016). Ontology-Based Trajectory Data Warehouse Conceptual Model. In: Madria, S., Hara, T. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2016. Lecture Notes in Computer Science(), vol 9829. Springer, Cham. https://doi.org/10.1007/978-3-319-43946-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43946-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43945-7

  • Online ISBN: 978-3-319-43946-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics