Nothing Special   »   [go: up one dir, main page]

Skip to main content

Formalized Timed Automata

  • Conference paper
  • First Online:
Interactive Theorem Proving (ITP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9807))

Included in the following conference series:

Abstract

Timed automata are a widely used formalism for modeling real-time systems, which is employed in a class of successful model checkers such as UPPAAL. These tools can be understood as trust-multipliers: we trust their correctness to deduce trust in the safety of systems checked by these tools. However, mistakes have previously been made. This particularly regards an approximation operation, which is used by model-checking algorithms to obtain a finite search space. The use of this operation left a soundness problem in the tools employing it, which was only discovered years after the first model checkers were devised. This work aims to provide certainty to our knowledge of the basic theory via formalization in Isabelle/HOL: we define the main concepts, formalize the classic decidability result for the language emptiness problem, prove correctness of the basic forward analysis operations, and finally outline how both streams of work can be combined to show that forward analysis with the common approximation operation correctly decides emptiness for the class of diagonal-free timed automata.

Supported by DFG project NI 491/16-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume a default clock numbering, mapping to index , for our examples.

  2. 2.

    denotes the empty list and \(x \cdot xs\) is a list constructed from head x and tail xs.

  3. 3.

    is the set of elements contained in .

  4. 4.

    denotes the fractional part of any real number .

References

  1. Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 592–601 (1993)

    Google Scholar 

  4. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003)

    Google Scholar 

  6. Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst. Des. 24(3), 281–320 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Are timed automata updatable? In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 464–479. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Castéran, P., Rouillard, D.: Towards a generic tool for reasoning about labeled transition systems. In: TPHOLs 2001: Supplemental Proceedings (2001). http://www.informatics.ed.ac.uk/publications/report/0046.html

  9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)

    Book  Google Scholar 

  10. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  11. Garnacho, M., Bodeveix, J.P., Filali-Amine, M.: A mechanized semantic framework for real-time systems. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 106–120. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Henzinger, T.A., Ho, P.-H., Wong-toi, H.: Hytech: a model checker for hybrid systems. Softw. Tools Technol. Transf. 1(1), 460–463 (1997)

    MATH  Google Scholar 

  13. Larsen, G.K., Pettersson, P., Yi, W.: Uppaal in a nutshell. Softw. Tools Technol. Transf. 1(1), 134–152 (1997)

    Article  MATH  Google Scholar 

  14. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Kobayashi, N., Babu, C.S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 298–315. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Wimmer, S.: Timed automata. Archive of Formal Proofs, March 2016. http://isa-afp.org/entries/Timed_Automata.shtml, Formal proof development

  16. Xu, Q., Miao, H.: Formal verification framework for safety of real-time system based on timed automata model in PVS. In: Proceedings of the IASTED International Conference on Software Engineering, pp. 107–112 (2006)

    Google Scholar 

  17. Xu, Q., Miao, H.: Manipulating clocks in timed automata using PVS. In: Proceedings of SNPD 2009, pp. 555–560 (2009)

    Google Scholar 

  18. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communicating systems by constraint-solving. In: Proceedings of Formal Description Techniques VII, pp. 243–258 (1994)

    Google Scholar 

  19. Yovine, S.: KRONOS: a verification tool for real-time systems. Softw. Tools Technol. Transf. 1(1), 123–133 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

I would like to thank Tobias Nipkow and the anonymous reviewers for their helpful comments on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Wimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wimmer, S. (2016). Formalized Timed Automata. In: Blanchette, J., Merz, S. (eds) Interactive Theorem Proving. ITP 2016. Lecture Notes in Computer Science(), vol 9807. Springer, Cham. https://doi.org/10.1007/978-3-319-43144-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43144-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43143-7

  • Online ISBN: 978-3-319-43144-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics