Abstract
In order to improve the speed and accuracy of image retrieval, This paper presents a hybrid optimization algorithm which originates from Particle Swarm Optimization (PSO) and SVM (Support Vector Machine). Firstly, it use PSO algorithm, The image in the database image as a particle in PSO algorithm, After operation, return to the optimum position of the image. Secondly, use SVM to feedback the related images, Use the classification distance and nearest neighbor density to measure the most valuable image, After update classifier, choose the furthest point from the classification hyperplane as target image. Finally, the proposed method is verified by experiment, the experimental results show that this algorithm can effectively improve the image retrieval speed and accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and, trends of the new age. ACM Comput. Surv. 40(2), 1–60 (2008)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948. IEEE, Piscataway (1995)
Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training SVM. J. Mach. Learn. Res. 6, 1889–1918 (2005)
Keerthi, S.S., Shevade, S., Bhattacharyy, C.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 3, 637–649 (2002)
Keerthi, S.S., Giibert, E.G.: Convergence of a generalized SMO algorithm for SVM classifier design. Mach. Learn. 46, 351–360 (2002)
Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods: Support Vector Learning. The MIT Press, Cambridge (1998)
Osuna, E., Frenud, R., Girosi, F.: An improved training algorithm for support vector machines. In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pp. 276–285. IEEE, New York (1997)
Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: Proceedings of IEEE International Conference on Image Processing, pp. 721–724 (2001)
Wang, X., Luo, G., Qin, K.: A composite descriptor for shape image retrieval. In: International Conference on Automation, Mechanical Control and Computational Engineering, pp. 759–764 (2015)
Broilo, M., De Natale, F.G.B.: A stochastic approach to image retrieval using relevance feedback and particle swarm optimization. IEEE Trans. Multimedia 12(4), 267–277 (2010)
Imran, M., Hashim, R., Noor Elaiza, A.K., et al.: Stochastic optimized relevance feedback particle swarm optimization for content based image retrieval. Sci. World J. 2014(2014), 752090–752091 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, X., Luo, G., Qin, K., Chen, A. (2016). A Hybrid PSO and SVM Algorithm for Content Based Image Retrieval. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-42085-1_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42084-4
Online ISBN: 978-3-319-42085-1
eBook Packages: Computer ScienceComputer Science (R0)