Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Comparative Approach of Ant Colony System and Mathematical Programming for Task Scheduling in a Mineral Analysis Laboratory

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2016)

Abstract

This paper considers the problem of scheduling a given set of samples in a mineral laboratory, located in Barranquilla Colombia. Taking into account the natural complexity of the process and the large amount of variables involved, this problem is considered as NP-hard in strong sense. Therefore, it is possible to find an optimal solution in a reasonable computational time only for small instances, which in general, does not reflect the industrial reality. For that reason, it is proposed the use of metaheuristics as an alternative approach in this problem with the aim to determine, with a low computational effort, the best assignation of the analysis in order to minimize the makespan and weighted total tardiness simultaneously. These optimization objectives will allow this laboratory to improve their productivity and the customer service, respectively. A Ant Colony Optimization algorithm (ACO) is proposed. Computational experiments are carried out comparing the proposed approach versus exact methods. Results show the efficiency of our ACO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niebles-Atencio, F., Neira-Rodado, D.: A Sule’s method initiated genetic algorithm for solving QAP formulation in facility layout design: a real world application. J. Theor. Appl. Inf. Technol. 84(2), 157–169 (2016)

    Google Scholar 

  2. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  3. Hoogeveen, H.: Multicriteria scheduling. Eur. J. Oper. Res. 167(3), 592–623 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Lei, D., Wu, Z.: Multi-objective production scheduling: a survey. Int. J. Adv. Manuf. Technol. 43(9–10), 926–938 (2009)

    Article  Google Scholar 

  6. Khalouli, S., Ghedjati, F., Hamzaoui, A.: Hybrid approach using ant colony optimization and fuzzy logic to solve multi-criteria hybrid flow shop scheduling problem. In: Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology (CSTST 2008), pp. 44–50 (2008)

    Google Scholar 

  7. Ponnamambalam, S.G., Ramkumar, V., Jawahar, N.: A multiobjective evolutionary algorithm for job shop scheduling. Prod. Plan. Control 12(8), 764–774 (2001)

    Article  Google Scholar 

  8. Armentano, V., Claudio, J.: An application of a multi-objective tabu search algorithm to a bicriteria flowshop problem. J. Heuristics 10(5), 463–481 (2005)

    Article  MATH  Google Scholar 

  9. Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., Werner, F.: A comparison of scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. Comput. Oper. Res. 36(2), 358–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, J., Ma, G., Ma, X.: A new heuristic for minimal makespan in no-wait hybrid flowshops. In: Proceedings of the 25th Chinese Control Conference, Harbin, Heilongjiang, 7–11 August 2009

    Google Scholar 

  11. Niebles Atencio, F., Solano-Charris, E.L., Montoya-Torres, J.R.: Ant colony optimization algorithm to minimize makespan and number of tardy jobs in flexible flowshop systems. In: Proceedings 2012 XXXVIII Conferencia Latinoamericana en Informática (CLEI 2012), Medellin, Colombia, 1–5 October 2012, pp. 1–10 (2012). doi:10.1109/CLEI.2012.6427154

  12. Allaoui, H., Artiba, A.: Integrating simulation and optimization to schedule a hybrid flowshop with maintenance constraints. Comput. Ind. Eng. 47(4), 431–450 (2004)

    Article  Google Scholar 

  13. Khalouli, S., Ghedjati, F., Hamzaoui, A.: An integrated ant colony optimization algorithm for the hybrid flow shop scheduling problem. In: Proceedings of the International Conference on Computers and Industrial Engineering (CIE 2009), pp. 554–559 (2009)

    Google Scholar 

  14. Khalouli, S., Ghedjati, F., Hamzaoui, A.: A meta-heuristic approach to solve a JIT scheduling problem in hybrid flow shop. Eng. Appl. Artif. Intell. 23(5), 765–771 (2010)

    Article  Google Scholar 

  15. Khalouli, S., Ghedjati, F., Hamzaoui, A.: An ant colony system algorithm for the hybrid flow-shop (2011). Alaykýran, K., Engin, O., Döyen, A.: Using ant colony optimization to solve hybrid flow shop scheduling problems. Int. J. Adv. Manuf. Technol. 35 (5–6), 541–550 (2007)

    Google Scholar 

  16. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: European Conference of Artificial Life, pp. 134–142 (1991)

    Google Scholar 

  17. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the Traveling Salesman Problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  18. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)

    Article  Google Scholar 

  19. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  20. Stützle, T., Hoos, H.H.: Max–min ant system. Future Gener. Comput. Syst. 16(9), 889–914 (2000)

    Article  MATH  Google Scholar 

  21. Tavares Neto, R.F., Godinho Filho, M.: Literature review regarding Ant Colony Optimization applied to scheduling problems: guidelines for implementation and directions for future research. Eng. Appl. Artif. Intell. 26(1), 150–161 (2013)

    Article  Google Scholar 

  22. Blum, C., Sampels, M.: Ant colony optimization algorithm for FOP shop scheduling: a case study on different pheromones representations. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), vol. 2, pp. 1558–1563. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Niebles Atencio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Atencio, F.N., Prasca, A.B., Rodado, D.N., Casseres, D.M., Santiago, M.R. (2016). A Comparative Approach of Ant Colony System and Mathematical Programming for Task Scheduling in a Mineral Analysis Laboratory. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9712. Springer, Cham. https://doi.org/10.1007/978-3-319-41000-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41000-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40999-3

  • Online ISBN: 978-3-319-41000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics