Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET

  • Conference paper
  • First Online:
Software for Exascale Computing - SPPEXA 2013-2015

Abstract

In astrophysics, the two main methods traditionally in use for solving the Euler equations of ideal fluid dynamics are smoothed particle hydrodynamics and finite volume discretization on a stationary mesh. However, the goal to efficiently make use of future exascale machines with their ever higher degree of parallel concurrency motivates the search for more efficient and more accurate techniques for computing hydrodynamics. Discontinuous Galerkin (DG) methods represent a promising class of methods in this regard, as they can be straightforwardly extended to arbitrarily high order while requiring only small stencils. Especially for applications involving comparatively smooth problems, higher-order approaches promise significant gains in computational speed for reaching a desired target accuracy. Here, we introduce our new astrophysical DG code TENET designed for applications in cosmology, and discuss our first results for 3D simulations of subsonic turbulence. We show that our new DG implementation provides accurate results for subsonic turbulence, at considerably reduced computational cost compared with traditional finite volume methods. In particular, we find that DG needs about 1.8 times fewer degrees of freedom to achieve the same accuracy and at the same time is more than 1.5 times faster, confirming its substantial promise for astrophysical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We are using the convention of normalizing the Fourier transform symmetrically with (2π)−3∕2.

References

  1. Abel, T.: rpSPH: a novel smoothed particle hydrodynamics algorithm. MNRAS 413, 271–285 (2011)

    Article  Google Scholar 

  2. Bauer, A., Springel, V.: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations. MNRAS 423, 2558–2578 (2012)

    Article  Google Scholar 

  3. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Karniadakis, G., Shu, C.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  5. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52 (186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection P 1-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO-Modélisation mathématique et analyse numérique 25 (3), 337–361 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Federrath, C., Klessen, R.S., Schmidt, W.: The density probability distribution in compressible isothermal turbulence: solenoidal versus compressive forcing. ApJ 688, L79–L82 (2008)

    Article  Google Scholar 

  11. Federrath, C., Klessen, R.S., Schmidt, W.: The fractal density structure in supersonic isothermal turbulence: solenoidal versus compressive energy injection. ApJ 692, 364–374 (2009)

    Article  Google Scholar 

  12. Federrath, C., Roman-Duval, J., Klessen, R.S., Schmidt, W., Mac Low, M.M.: Comparing the statistics of interstellar turbulence in simulations and observations. A&A 512, A81 (2010)

    Article  Google Scholar 

  13. Galerkin, B.G.: On electrical circuits for the approximate solution of the laplace equation. Vestnik Inzh. 19, 897–908 (1915)

    Google Scholar 

  14. Gallego-Valencia, P., Klingenberg, C., Chandrashekar, P.: On limiting for higher order discontinuous Galerkin methods for 2D Euler equations. Bull. Braz. Math. Soc. 47 (1), 335–345 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gallego-Valencia, J.P., Löbbert, J., Müthing, S., Bastian, P., Klingenberg, C., Xia, Y.: Implementing a discontinuous Galerkin method for the compressible, inviscid Euler equations in the dune framework. PAMM 14 (1), 953–954 (2014)

    Article  Google Scholar 

  16. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heß, S., Springel, V.: Particle hydrodynamics with tessellation techniques. MNRAS 406, 2289–2311 (2010)

    Article  Google Scholar 

  18. Hopkins, P.F.: A general class of Lagrangian smoothed particle hydrodynamics methods and implications for fluid mixing problems. MNRAS 428, 2840–2856 (2013)

    Article  Google Scholar 

  19. Klessen, R.S., Heitsch, F., Mac Low, M.M.: Gravitational collapse in turbulent molecular clouds. I. Gasdynamical turbulence. ApJ 535, 887–906 (2000)

    Google Scholar 

  20. Mac Low, M.M., Klessen, R.S.: Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004)

    Article  Google Scholar 

  21. Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., Hernquist, L.: A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations. MNRAS 437, 397–414 (2014)

    Article  Google Scholar 

  22. Price, D.J.: Modelling discontinuities and Kelvin Helmholtz instabilities in SPH. J. Comput. Phys. 227, 10040–10057 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Price, D.J., Federrath, C.: A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence. MNRAS 406, 1659–1674 (2010)

    Google Scholar 

  24. Read, J.I., Hayfield, T., Agertz, O.: Resolving mixing in smoothed particle hydrodynamics. MNRAS 405, 1513–1530 (2010)

    Google Scholar 

  25. Reed, W.H., Hill, T.R.: Triangularmesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)

    Google Scholar 

  26. Schaal, K., Bauer, A., Chandrashekar, P., Pakmor, R., Klingenberg, C., Springel, V.: Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement. MNRAS 453, 4278–4300 (2015)

    Article  Google Scholar 

  27. Schmidt, W., Hillebrandt, W., Niemeyer, J.C.: Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence. Comput. Fluids 35 (4), 353–371 (2006)

    Article  MATH  Google Scholar 

  28. Schuecker, P., Finoguenov, A., Miniati, F., Böhringer, H., Briel, U.G.: Probing turbulence in the Coma galaxy cluster. A&A 426, 387–397 (2004)

    Article  Google Scholar 

  29. Wadsley, J.W., Veeravalli, G., Couchman, H.M.P.: On the treatment of entropy mixing in numerical cosmology. MNRAS 387, 427–438 (2008)

    Article  Google Scholar 

  30. Zanotti, O., Fambri, F., Dumbser, M.: Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement. MNRAS 452, 3010–3029 (2015)

    Article  Google Scholar 

  31. Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Gero Schnücke, Juan-Pablo Gallego, Johannes Löbbert, Federico Marinacci, Christoph Pfrommer, and Christian Arnold for very helpful discussions. The authors gratefully acknowledge the support of the Klaus Tschira Foundation. We acknowledge financial support through subproject EXAMAG of the Priority Program 1648 ‘SPPEXA’ of the German Research Foundation, and through the European Research Council through ERC-StG grant EXAGAL-308037. KS and AB acknowledge support by the IMPRS for Astronomy and Cosmic Physics at the Heidelberg University. PC was supported by the AIRBUS Group Corporate Foundation Chair in Mathematics of Complex Systems established in TIFR/ICTS, Bangalore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Springel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bauer, A., Schaal, K., Springel, V., Chandrashekar, P., Pakmor, R., Klingenberg, C. (2016). Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_17

Download citation

Publish with us

Policies and ethics