Abstract
Relative entropy programs belong to the class of convex optimization problems. Within techniques based on the arithmetic-geometric mean inequality, they facilitate to compute nonnegativity certificates of polynomials and of signomials.
While the initial focus was mostly on unconstrained certificates and unconstrained optimization, recently, Murray, Chandrasekaran and Wierman developed conditional techniques, which provide a natural extension to the case of convex constrained sets. This expository article gives an introduction into these concepts and explains the geometry of the resulting conditional SAGE cone. To this end, we deal with the sublinear circuits of a finite point set in \(\mathbb {R}^n\), which generalize the simplicial circuits of the affine-linear matroid induced by a finite point set to a constrained setting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. SIAM J. Appl. Algebra Geom. 3(2), 193–230 (2019)
Averkov, G.: Optimal size of linear matrix inequalities in semidefinite approaches to polynomial optimization. SIAM J. Appl. Algebra Geom. 3(1), 128–151 (2019). https://doi.org/10.1137/18M1201342
Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8, 67–127 (2007)
Chandrasekaran, V., Shah, P.: Relative entropy relaxations for signomial optimization. SIAM J. Optim. 26(2), 1147–1173 (2016). https://doi.org/10.1137/140988978
Chandrasekaran, V., Shah, P.: Relative entropy optimization and its applications. Math. Program. A 161(1–2), 1–32 (2017). https://doi.org/10.1007/s10107-016-0998-2
Chares, R.: Cones and interior-point algorithms for structured convex optimization involving powers and exponentials. Ph.D. thesis, Université Catholique de Louvain (2009)
Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)
Domahidi, A., Chu, E., Boyd, S.: ECOS: an SOCP solver for embedded systems. In: Proceedings of European Control Conference 2013, Zürich, pp. 3071–3076. IEEE (2013)
Dressler, M., Murray, R.: Algebraic perspectives on signomial optimization. SIAM J. Appl. Algebra Geom. 6(4), 650–684 (2022)
Dressler, M., Iliman, S., de Wolff, T.: A Positivstellensatz for sums of nonnegative circuit polynomials. SIAM J. Appl. Algebra Geom. 1(1), 536–555 (2017)
Dressler, M., Naumann, H., Theobald, T.: The dual cone of sums of non-negative circuit polynomials. Adv. Geom. 21(2), 227–236 (2021)
Forsgård, J., de Wolff, T.: The algebraic boundary of the SONC cone. SIAM J. Appl. Algebra Geom. 6, 468–502 (2022)
Handelman, D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math. 132(1), 35–62 (1988). http://projecteuclid.org/getRecord?id=euclid.pjm/1102689794
Iliman, S., de Wolff, T.: Amoebas, nonnegative polynomials and sums of squares supported on circuits. Res. Math. Sci. 3(paper no. 9) (2016). https://doi.org/10.1186/s40687-016-0052-2
Karaca, O., Darivianakis, G., Beuchat, P., Georghiou, A., Lygeros, J.: The REPOP toolbox: tackling polynomial optimization using relative entropy relaxations. In: 20th IFAC World Congress, IFAC PapersOnLine, vol. 50(1), pp. 11652–11657. Elsevier (2017). https://doi.org/10.1016/j.ifacol.2017.08.1669
Katthän, L., Naumann, H., Theobald, T.: A unified framework of SAGE and SONC polynomials and its duality theory. Math. Comput. 90, 1297–1322 (2021)
Lasserre, J.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2010). https://doi.org/10.1142/p665
Magron, V., Wang, J.: SONC optimization and exact nonnegativity certificates via second-order cone programming. J. Symb. Comput. 115, 346–370 (2023)
Magron, V., Wang, J.: Sparse Polynomial Optimization: Theory and Practice. World Scientific, Singapore (2023)
MOSEK: MOSEK Modeling Cookbook 3.3.0. Online (2022). https://docs.mosek.com/modeling-cookbook/index.html
Moustrou, P., Naumann, H., Riener, C., Theobald, T., Verdure, H.: Symmetry reduction in AM/GM-based optimization. SIAM J. Optim. 32, 765–785 (2022)
Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.: Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry. Found. Comp. Math. 16(1), 69–97 (2015). https://doi.org/10.1007/s10208-014-9239-3
Murray, R.: Sageopt 0.5.3 (2020). https://doi.org/10.5281/ZENODO.4017991
Murray, R., Chandrasekaran, V., Wierman, A.: Newton polytopes and relative entropy optimization. Found. Comput. Math. 21, 1703–1737 (2021)
Murray, R., Chandrasekaran, V., Wierman, A.: Signomial and polynomial optimization via relative entropy and partial dualization. Math. Program. Comput. 13, 257–295 (2021). https://doi.org/10.1007/s12532-020-00193-4
Murray, R., Naumann, H., Theobald, T.: Sublinear circuits and the constrained signomial nonnegativity problem. Math. Program. 198, 471–505 (2023)
Naumann, H., Theobald, T.: The \(\mathcal {S}\)-cone and a primal-dual view on second-order representability. Beiträge Algebra Geom. (Special issue on the 50th anniversary of the journal) 62, 229–249 (2021)
Naumann, H., Theobald, T.: Sublinear circuits for polyhedral sets. Vietnam J. Math. (Special issue on the honor of Bernd Sturmfels) 50, 447–468 (2022)
Nesterov, Y.: Constructing self-concordant barriers for convex cones. CORE discussion paper no. 2006/30 (2006)
Nesterov, Y.: Lectures on Convex Optimization, 2nd edn. Springer, Berlin (2018)
Nowzari, C., Preciado, V.M., Pappas, G.J.: Optimal resource allocation for control of networked epidemic models. IEEE Trans. Control Netw. Syst. 4(2), 159–169 (2017)
Pantea, C., Koeppl, H., Craciun, G.: Global injectivity and multiple equilibria in uni- and bi-molecular reaction networks. Discrete Contin. Dyn. Syst. B 17(6), 2153–2170 (2012). https://doi.org/10.3934/dcdsb.2012.17.2153
Papp, D.: Duality of sum of nonnegative circuit polynomials and optimal SONC bounds. J. Symb. Comput. 114, 246–266 (2023)
Reznick, B.: Forms derived from the arithmetic-geometric inequality. Math. Annalen 283(3), 431–464 (1989)
Wang, J.: Nonnegative polynomials and circuit polynomials. SIAM J. Appl. Algebra Geom. 6(2), 111–133 (2022)
Wang, A.H., Jaini, P., Yu, Y., Poupart, P.: A Positivstellensatz for conditional SAGE signomials (2020). Preprint, arXiv:2003.03731
Wang, J., Magron, V., Lasserre, J.B., Mai, N.H.A.: CS-TSSOS: correlative and term sparsity for large-scale polynomial optimization. ACM Trans. Math. Softw. 48(4), 1–26 (2022)
York, M., Hoburg, W., Drela, M.: Turbofan engine sizing and tradeoff analysis via signomial programming. J. Aircraft 55(3), 988–1003 (2018). https://doi.org/10.2514/1.c034463
Acknowledgements
This expository article took its origin in the presentation material developed for a minicourse held at the Second POEMA (Polynomial Optimization, Efficiency Through Moments and Algebra) Learning Week, September 2021, Toulouse/hybrid. Thanks to Constantin Ickstadt, Nadine Defoßa as well as the anonymous reviewers for helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Theobald, T. (2023). Relative Entropy Methods in Constrained Polynomial and Signomial Optimization. In: Kočvara, M., Mourrain, B., Riener, C. (eds) Polynomial Optimization, Moments, and Applications. Springer Optimization and Its Applications, vol 206. Springer, Cham. https://doi.org/10.1007/978-3-031-38659-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-38659-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38658-9
Online ISBN: 978-3-031-38659-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)