Abstract
Analysis of histopathological images allows doctors to diagnose diseases like cancer, which is the cause of nearly one in six deaths worldwide. Classification of such images is one of the most critical topics in biomedical computing. Deep learning models obtain high prediction quality but require a lot of annotated data for training. The data must be labeled by domain experts, which is time-consuming and expensive. Few-shot methods allow for data classification using only a few training samples; therefore, they are an increasingly popular alternative to collecting a large dataset and supervised learning. This chapter presents a survey on different few-shot learning techniques of histopathological image classification with various types of cancer. The methods discussed are based on contrastive learning, meta-learning, and data augmentation. We collect and overview publicly available datasets with histopathological images. We also show some future research directions in few-shot learning in the histopathology domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gurcan, M., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 147–71 (2009)
Parnami A., Lee, M.: Learning from few examples: a summary of approaches to few-shot learning (2022). arxiv:2203.04291
Song, Y., Wang, T., Mondal, S.K., Sahoo, J.P.: A comprehensive survey of few-shot learning: evolution, applications, challenges, and opportunities (2022). arxiv:2205.06743
Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53(3). https://doi.org/10.1145/3386252
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks (2017). arxiv:1703.03400
So, C.: Exploring meta learning: Parameterizing the learning-to-learn process for image classification. In: International conference on artificial intelligence in information and communication (ICAIIC) 2021, pp. 199–202
Singh, R., Bharti, V., Purohit, V., Kumar, A., Singh, A.K., Singh, S.K.: Metamed: few-shot medical image classification using gradient-based meta-learning. Pattern Recogn. 120, 108111 (2021). https://www.sciencedirect.com/science/article/pii/S0031320321002983
Koch, G.R.: Siamese neural networks for one-shot image recognition. In: ICML deep learning workshop (2015)
Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc., (2016). https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2495–2504 (2020)
Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning (2017). arxiv:1703.05175
Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)
Qin, T., Li, W., Shi, Y., Gao, Y.: Diversity helps: unsupervised few-shot learning via distribution shift-based data augmentation (2020) arxiv:2004.05805
Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features (2016). arxiv:1606.02819
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in neural information processing systems, vol. 27. Curran Associates, Inc., (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). arxiv:1411.1784
Kumar, N., Gupta, S., Gupta, R.: Whole slide imaging (wsi) in pathology: current perspectives and future directions. J. Digit. Imaging 4, 1034–1040 (2020)
Amin, S., Mori, T., Itoh, T.: A validation study of whole slide imaging for primary diagnosis of lymphoma. Pathol. Int. 69(6), 341–349 (2019). https://onlinelibrary.wiley.com/doi/abs/10.1111/pin.12808
Fox, H.: Is h &e morphology coming to an end? J. Clin. Pathol. 1, 38–40 (2000)
Alturkistani, H., Tashkandi, F., Mohammedsaleh, Z.: Histological stains: a literature review and case study. Glob. J. Health Sci. 3, 72–9 (2015)
Libard, D., Cerjan, S., Alafuzoff, I.: Characteristics of the tissue section that influence the staining outcome in immunohistochemistry. Histochem. Cell Biol. 151, 91–96 (2019)
Chen, P., Liang, Y., Shi, X., Yang, L., Gader, P.: Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion Neurocomputing 312–325 (2021)
Kriegsmann, M., Warth, A.: What is better/reliable, mitosis counting or ki67/mib1 staining? Transl. Lung Cancer Res. 5, 543–546 (2016)
Wenbin, H., Ting, L., Yongjie, H., Wuyi, M., Jinguang, D., Yinxia, L., Yuan, Y., Leijie, W., Zhiwen, J., Yongqiang, W., Jie, Y., Chen, C.: A review: the detection of cancer cells in histopathology based on machine vision. Comput. Biol. Med. (2022)
Chao, S., Belanger, D.: Generalizing few-shot classification of whole-genome doubling across cancer types. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 3382–3392 (2021)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2009, pp. 248–255
Fagerblom, F., Stacke, K., Molin, J.: Combatting out-of-distribution errors using model-agnostic meta-learning for digital pathology. In: Medical imaging (2021)
Litjens, G.J.S., Bándi, P., Bejnordi, B.E., Geessink, O.G.F., Balkenhol, M.C.A., Bult, P., Halilovic, A., Hermsen, M., van de Loo, R., Vogels, R., Manson, Q.F., Stathonikos, N., Baidoshvili, A., van Diest, P., Wauters, C.A., van Dijk, M., van der Laak, J.: 1399 h &e-stained sentinel lymph node sections of breast cancer patients: the camelyon dataset. GigaScience 7 (2018)
Lindman, K., Rose, J.F., Lindvall, M., Stadler, C.B.: Ovary data from the visual Sweden project droid (2019). https://datahub.aida.scilifelab.se/10.23698/aida/drov
Yuan, Z., Esteva, A., Xu, R.: Metahistoseg: a python framework for meta learning in histopathology image segmentation. In: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: first Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, Proceedings. Springer, Berlin, Heidelberg, pp. 268–275 (2021). https://doi.org/10.1007/978-3-030-88210-5_27
Zhang, C., Cui, Q., Ren, S.: Few-shot medical image classification with MAML based on dice loss. In: 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA), pp. 348–351 (2022)
Lau, J.J., Gayen, S., Ben Abacha, A., Demner-Fushman, D.: A dataset of clinically generated visual questions and answers about radiology images. Sci. Data 5, 180251 (2018)
He, X., Zhang, Y., Mou, L., Xing, E., Xie, P.: Pathvqa: 30000+ questions for medical visual question answering (2020). arxiv:2003.10286
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization (2017). arxiv:1710.09412
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout (2017). arxiv:1708.04552
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision
Wen, Q., Yan, J., Liu, B., Meng, D., Li, S.: A meta-learning method for histopathology image classification based on LSTM-model. In: Tenth international conference on graphic and image processing (ICGIP 2018) (2019)
Medela, A., Picon, A., Saratxaga, C.L., Belar, O., Cabezón, V., Cicchi, R., Bilbao, R., Glover, B.: Few shot learning in histopathological images: reducing the need of labeled data on biological datasets. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1860–1864 (2019)
Kather, J., Weis, C.-A., Bianconi, F., Melchers, S., Schad, L., Gaiser, T., Marx, A., Zöllner, F.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 27988 (2016)
Sikaroudi, M., Safarpoor, A., Ghojogh, B., Shafiei, S., Crowley, M., Tizhoosh, H.: Supervision and source domain impact on representation learning: a histopathology case study. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1400–1403 (2020)
Medela, A., Picon, A.: Constellation loss: improving the efficiency of deep metric learning loss functions for optimal embedding (2019). arxiv:1905.10675
Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc., (2016). https://proceedings.neurips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
Teh, E.W., Taylor, G.W.: Learning with less data via weakly labeled patch classification in digital pathology (2019). arxiv:1911.12425
Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant cnns for digital pathology (2018). arxiv:1806.03962
Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies (2017). arxiv:1703.07464
Yang, J., Chen, H., Yan, J., Chen, X., Yao, J.: Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning (2022). arxiv:2202.09059
Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers (2021). arxiv:2104.02057
Kather, J.N., Halama, N., Marx, A.: 100,000 histological images of human colorectal cancer and healthy tissue (2018). https://doi.org/10.5281/zenodo.1214456
Borkowski, A.A., Bui, M.M., Thomas, L.B., Wilson, C.P., DeLand, L.A., Mastorides, S.M.: Lung and colon cancer histopathological image dataset (lc25000) (2019). arxiv:1912.12142
Kim, Y.J., Jang, H., Lee, K., Park, S., Min, S.-G., Hong, C., Park, J. H., Lee, K., Kim, J., Hong, W., Jung, H., Liu, Y., Rajkumar, H., Khened, M., Krishnamurthi, G., Yang, S., Wang, X., Han, C.H., Kwak, J.T., Ma, J., Tang, Z., Marami, B., Zeineh, J., Zhao, Z., Heng, P.-A., Schmitz, R., Madesta, F., Rösch, T., Werner, R., Tian, J., Puybareau, E., Bovio, M., Zhang, X., Zhu, Y., Chun, S.Y., Jeong, W.-K., Park, P., Choi, J.: Paip 2019: liver cancer segmentation challenge. Med. Image Anal. 67, 101854 (2021). https://www.sciencedirect.com/science/article/pii/S1361841520302188
Shaikh, N.N., Wasag, K., Nie, Y.: Artifact identification in digital histopathology images using few-shot learning. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–4 (2022)
Deuschel, J., Firmbach, D., Geppert, C.I., Eckstein, M., Hartmann, A., Bruns, V., Kuritcyn, P., Dexl, J., Hartmann, D., Perrin, D., Wittenberg, T., Benz, M.: Multi-prototype Few-Shot Learning in Histopathology, IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), vol. 2021, pp. 620–628 (2021)
Balkenhol, M., Karssemeijer, N., Litjens, G., van der Laak, J., Ciompi, F., Tellez, D.: H &e stain augmentation improves generalization of convolutional networks for histopathological mitosis detection. In: Medical Imaging 2018: digital Pathology, p. 34 (2018)
Li, M., Zhao, K., Peng, C., Hobson, P., Jennings, T., Lovell, B.C.: Deep adaptive few example learning for microscopy image cell counting. In: Digital Image Computing: techniques and Applications (DICTA), vol. 2021, pp. 1–7 (2021)
Ranjan, V., Sharma, U., Nguyen, T., Hoai, M.: Learning to count everything (2021). arxiv:2104.08391
Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.-W., Snead, D.R.J., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)
Stegmüller, T., Bozorgtabar, B., Spahr, A., Thiran, J.-P.: Scorenet: learning non-uniform attention and augmentation for transformer-based histopathological image classification. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), vol. 2023, pp. 6159–6168 (2023)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale (2020). arxiv:2010.11929
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need (2017). arxiv:1706.03762
Li, M., Li, C., Peng, C., Lovell, B.: Conditioned generative transformers for histopathology image synthetic augmentation (2022). arxiv:2212.09977
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arxiv:1701.07875
Marchesi, M.: Megapixel size image creation using generative adversarial networks (2017). arxiv:1706.00082
Yuan, Z., Esteva, A., Xu, R.: Metahistoseg: a python framework for meta learning in histopathology image segmentation (2021). arxiv:2109.14754
Saha, S., Choi, O., Whitaker, R.: Few-shot segmentation of microscopy images using gaussian process. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds.) Medical Optical Imaging and Virtual Microscopy Image Analysis, pp. 94–104. Springer Nature Switzerland, Cham (2022)
Kurmi, Y., Chaurasia, V., Kapoor, N.: Histopathology image segmentation and classification for cancer revelation. Signal Image Video Process 15, 09 (2021)
Kim, H., Yoon, H., Thakur, N., Hwang, G., Lee, E., Kim, C., Chong, Y.: Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain. Sci. Rep. (1) (2021)
He, S., Minn, K.T., Solnica-Krezel, L., Anastasio, M.A., Li, H.: Deeply-supervised density regression for automatic cell counting in microscopy images (2020). arxiv:2011.03683
Shakeri, F., Boudiaf, M., Mohammadi, S., Sheth, I., Havaei, M., Ayed, I.B., Kahou, S.E.: Fhist: a benchmark for few-shot classification of histological images (2022). arxiv:2206.00092
Moon, S., Sohn, S.S., Zhou, H., Yoon, S., Pavlovic, V., Khan, M.H., Kapadia, M.: HM: hybrid masking for few-shot segmentation. In: Computer Vision-ECCV: 17th European Conference, Tel Aviv, Israel. Proceedings. Part XX, vol. 2022. Springer, pp. 506–523 (2022)
Wu, Y., Chanda, S., Hosseinzadeh, M., Liu, Z., Wang, Y.: Few-shot learning of compact models via task-specific meta distillation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6265–6274 (2023)
Li, Z., Hu, Z., Luo, W., Hu, X.: Sabernet: self-attention based effective relation network for few-shot learning. Pattern Recogn. 133, 109024 (2023). https://www.sciencedirect.com/science/article/pii/S0031320322005040
Peng, Y., Liu, Y., Tu, B., Zhang, Y.: Convolutional transformer-based few-shot learning for cross-domain hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 16, 1335–1349 (2023)
Liu, Y., Shi, D., Lin, H.: Few-shot learning with representative global prototype (2023). https://openreview.net/forum?id=vT2OIobt3pQ
Lin, S., Zeng, X., Zhao, R.: Explore the power of dropout on few-shot learning (2023)
Da, Q., Huang, X., Li, Z., Zuo, Y., Zhang, C., Liu, J., Chen, W., Li, J., Xu, D., Hu, Z., Yi, H., Guo, Y., Wang, Z., Chen, L., Zhang, L., He, X., Zhang, X., Mei, K., Zhu, C., Lu, W., Shen, L., Shi, J., Li, J., Krishnamurthi, S.S.G., Yang, J., Lin, T., Song, Q., Liu, X., Graham, S., Bashir, R.M.S., Yang, C., Qin, S., Tian, X., Yin, B., Zhao, J., Metaxas, D.N., Li, H., Wang, C., Zhang, S.: Digestpath: a benchmark dataset with challenge review for the pathological detection and segmentation of digestive-system. Med. Image Anal. 80, 102485 (2022). https://www.sciencedirect.com/science/article/pii/S1361841522001323
Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)
Veta, M., Heng, Y.J., Stathonikos, N., Bejnordi, B.E., Beca, F., Wollmann, T., Rohr, K., Shah, M.A., Wang, D., Rousson, M., Hedlund, M., Tellez, D., Ciompi, F., Zerhouni, E., Lanyi, D., Viana, M., Kovalev, V., Liauchuk, V., Phoulady, H.A., Qaiser, T., Graham, S., Rajpoot, N., Sjöblom, E., Molin, J., Paeng, K., Hwang, S., Park, S., Jia, Z., Chang, E.I.-C., Xu, Y., Beck, A.H., van Diest, P.J., Pluim, J.P.: Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019)
Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology (2018)
Bejnordi, B.E., Veta, M., Van Diest, P.J., Van Ginneken, B., Karssemeijer, N., Litjens, G., Van Der Laak, J.A., Hermsen, M., Manson, Q.F., Balkenhol, M., Geessink, O.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017). https://doi.org/10.1001/jama.2017.14585
Bándi, P., Geessink, O., Manson, Q., Van Dijk, M., Balkenhol, M., Hermsen, M., Ehteshami Bejnordi, B., Lee, B., Paeng, K., Zhong, A., Li, Q., Zanjani, F.G., Zinger, S., Fukuta, K., Komura, D., Ovtcharov, V., Cheng, S., Zeng, S., Thagaard, J., Dahl, A.B., Lin, H., Chen, H., Jacobsson, L., Hedlund, M., Çetin, M., Halici, E., Jackson, H., Chen, R., Both, F., Franke, J., Küsters-Vandevelde, H., Vreuls, W., Bult, P., van Ginneken, B., van der Laak, J., Litjens, G.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2019)
Babaie, M., Kalra, S., Sriram, A., Mitcheltree, C., Zhu, S., Khatami, S.A., Rahnamayan, S., Tizhoosh, H.R.: Classification and retrieval of digital pathology scans: a new dataset. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 760–768 (2017)
Sirinukunwattana, K., Pluim, J.P.W., Chen, H., Qi, X., Heng, P.-A., Guo, Y.B., Wang, L.Y., Matuszewski, B.J., Bruni, E., Sanchez, U., Böhm, A., Ronneberger, O., Cheikh, B.B., Racoceanu, D., Kainz, P., Pfeiffer, M., Urschler, M., Snead, D.R.J., Rajpoot, N.M.: Gland segmentation in colon histology images: the GLAS challenge contest (2016)
Sirinukunwattana, K., Snead, D., Rajpoot, N.: A stochastic polygons model for glandular structures in colon histology images. IEEE Trans. Med. Imaging 34, 05 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Szołomicka, J., Markowska-Kaczmar, U. (2023). An Overview of Few-Shot Learning Methods in Analysis of Histopathological Images. In: Kwaśnicka, H., Jain, N., Markowska-Kaczmar, U., Lim, C.P., Jain, L.C. (eds) Advances in Smart Healthcare Paradigms and Applications. Intelligent Systems Reference Library, vol 244. Springer, Cham. https://doi.org/10.1007/978-3-031-37306-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-37306-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37305-3
Online ISBN: 978-3-031-37306-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)