Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Recent Review of Video Anomaly Detection for Smart Cities

  • Conference paper
  • First Online:
Advances on Intelligent Computing and Data Science (ICACIn 2022)

Abstract

According to Maslow’s hierarchy of needs, safety is a crucial component that must be satisfied before individuals can attend to higher up needs. Therefore, video surveillance systems have become more popular and heavily used in urban areas, expressing people's need for the safety of their lives and goods. However, video surveillance cameras alone cannot serve efficiently this purpose. Thusly, the urge for an automated video surveillance system has emerged to timely detect anomalies and raise early alarms to ensure public safety and security. In this paper, we will be focusing mainly on safety and security in smart cities, as we will be reviewing more precisely recent works related to video anomaly detection in public spaces, we will also provide the reader with a brief dataset benchmarking along with a comparative analysis of state-of-the-art literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Division, U.N.P.: Urban population (% of total population. https://bit.ly/39IhMSK. Accessed 28 Sept 2022

  2. Hollands, R.G.: Will the Real Smart City Please Stand Up? Tylor & Francis Group (2008)

    Google Scholar 

  3. Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. J. Internet Serv. Appl. 6(1), 1–15 (2015). https://doi.org/10.1186/s13174-015-0041-5

    Article  Google Scholar 

  4. Ristvej, J., Lacinák, M., Ondrejka, R.: On smart city and safe city concepts. Mobile Networks Appl. 25(3), 836–845 (2020). https://doi.org/10.1007/s11036-020-01524-4

    Article  Google Scholar 

  5. Lacinák, M., Ristvej, J.: Smart city, safety and security. In: International Scientific Conference on Sustainable, Modern and Safe Transport (2017)

    Google Scholar 

  6. Trivedi, A.J., Mehta, A.: Maslow’s hierarchy of needs - theory of human motivation. Int. J. Res. All Subjects Multi Lang. 7 (2019)

    Google Scholar 

  7. Krishna, A., Pendkar, N., Kasar, S., Mahind, U., Desai, S.: Advanced video surveillance system. In: 2021 3rd International Conference on Signal Processing and Communication (ICPSC), pp. 558–561 (2021). https://doi.org/10.1109/ICSPC51351.2021.9451694

  8. Varadarajan, J., Odobez, J.-M.: Topic models for scene analysis and abnormality detection. In: IEEE 12th International Conference on Computer Vision Workshops, Kyoto (2009)

    Google Scholar 

  9. Popoola, O.P., Wang, K.: Video-based abnormal human behavior recognition—a review. IEEE Trans. Syst. Man Cybern. 42, 11 (2012)

    Google Scholar 

  10. Herbert, J.: To count a crowd. Columbia J. Rev. 6, 37 (1967)

    Google Scholar 

  11. Zhang, M., Li, T., Yu, Y., Li, Y., Hui, P., Zheng, Y.: Urban anomaly analytics: description, detection and prediction. IEEE Trans. Big Data 28, 04 (2020)

    Google Scholar 

  12. Lee, T., Chun, C., Ryu, S.-K.: Detection of road-surface anomalies using a smartphone camera and accelerometer. Sensors. 21 (2021)

    Google Scholar 

  13. Leyva, R., Sanchez, V., Li, C.-T.: Video anomaly detection with compact feature sets for online performance. IEEE Trans. Image Process. 26, 3463–3478 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nayak, R., Pati, U.C., Das, S.K.: A comprehensive review on deep learning-based methods for video anomaly detection. Image Vis. Comput. 106 (2021)

    Google Scholar 

  15. Ullah, W., Ullah, A., Hussain, T., Khan, Z.A., Baik, S.W.: An efficient anomaly recognition framework using an attention residual LSTM in surveillance videos. Sensors 21, 2811 (2021)

    Article  Google Scholar 

  16. Azis, F.M.A., Nasrun, M., Setianingsih, C., Murti, M.A.: Face recognition in night day using method eigenface. In: International Conference on Signals and Systems (ICSigSys.), Bali, Indonesia (2018)

    Google Scholar 

  17. Huang, Z., et al.: A benchmark and comparative study of video-based face recognition on COX face database. IEEE Trans. Image Process. 24, 5967–5981 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Technol. 18, 1114–1127 (2008)

    Article  Google Scholar 

  19. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  20. Parakkal, B.R.K.M.T.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imag. 4, 36 (2018)

    Google Scholar 

  21. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54, 1–38 (2022)

    Article  Google Scholar 

  22. Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Deep-cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Trans. Image Process. 26, 1992–2004 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wiktorski, T., Demchenko, Y., Belloum, A., Shirazi, A.: Quantitative and qualitative analysis of current data science programs from perspective of data science competence groups and framework. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp. 633–638 (2016). https://doi.org/10.1109/CloudCom.2016.0109

  24. Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Relational Learning for Joint Head and Human Detection. arXiv:1909.10674 [cs]. (2019)

  25. Buch, N., Orwell, J., Velastin, S.A.: Urban road user detection and classification using 3D wire frame models. IET Comput. Vis. 4, 105–116 (2010). https://doi.org/10.1049/iet-cvi.2008.0089

    Article  Google Scholar 

  26. Leyva, R., Sanchez, V., Li, C.-T.: The LV dataset: a realistic surveillance video dataset for abnormal event detection. In: 2017 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1–6 (2017). https://doi.org/10.1109/IWBF.2017.7935096

  27. Wu, J., Li, Z., Qu, W., Zhou, Y.: One shot crowd counting with deep scale adaptive neural network. Electronics 8, 701 (2019). https://doi.org/10.3390/electronics8060701

    Article  Google Scholar 

  28. Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6 (2012). https://doi.org/10.1109/CVPRW.2012.6239348

  29. Blunsden, S., Fisher, R.B.: The BEHAVE video dataset: ground truthed video for multi-person (2009)

    Google Scholar 

  30. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset, vol. 32 (2013)

    Google Scholar 

  31. Liao, Y., Xie, J., Geiger, A.: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. arXiv:2109.13410 [cs]. (2021)

  32. Russell, D.M., Gong, S.: Exploiting periodicity in recurrent scenes. In: Proceedings of the British Machine Vision Conference 2008, pp. 71.1–71.10. British Machine Vision Association, Leeds (2008). https://doi.org/10.5244/C.22.71

  33. Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31, 539–555 (2009). https://doi.org/10.1109/TPAMI.2008.87

    Article  Google Scholar 

  34. Shao, J., Kang, K., Loy, C.C., Wang, X.: Deeply learned attributes for crowded scene understanding. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4657–4666 (2015). https://doi.org/10.1109/CVPR.2015.7299097

  35. Sindagi, V., Yasarla, R., Patel, V.: Pushing the frontiers of unconstrained crowd counting: new dataset and benchmark method. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1221–1231 (2019). https://doi.org/10.1109/ICCV.2019.00131

  36. Sindagi, V.A., Yasarla, R., Patel, V.M.: JHU-CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method. arXiv:2004.03597 [cs]. (2020)

  37. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 935–942 (2009). https://doi.org/10.1109/CVPR.2009.5206641

  38. Ferryman, J., Shahrokni, A.: PETS2009: dataset and challenge. In: 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–6 (2009). https://doi.org/10.1109/PETS-WINTER.2009.5399556

  39. Loy, C.C., Chen, K., Gong, S., Xiang, T.: Crowd counting and profiling: methodology and evaluation. In: Ali, S., Nishino, K.,Manocha, D., Shah, M. (eds.) Modeling, Simulation and Visual Analysis of Crowds. TISVC, vol. 11, pp. 347–382. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8483-7_14

  40. CAVIAR: Context Aware Vision using Image-based Active Recognition. https://homepages.inf.ed.ac.uk/rbf/CAVIAR/. Accessed 28 Sept 2022

  41. Avenue Dataset. http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html. Accessed 28 Sept 2022

  42. UCSD Anomaly Detection Dataset. http://www.svcl.ucsd.edu/projects/anomaly/dataset.html. Accessed 28 Sept 2022

  43. UR Fall Detection Dataset. http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html. Accessed 31 Oct 2021

  44. Multiple cameras fall dataset. http://www.iro.umontreal.ca/~labimage/Dataset/. Accessed 28 Sept 2022

  45. Detecting Irregularities in images and in Video. https://www.wisdom.weizmann.ac.il/~vision/Irregularities.html. Accessed 28 Sept 2022

  46. Monitoring Human Activity – Home. http://mha.cs.umn.edu/. Accessed 28 Sept 2022

  47. SDHA 2010 High-level Human Interaction Recognition Challenge. https://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html. Accessed 28 Sept 2022

  48. Demiröz, B.E., Ari, İ., Eroğlu, O., Salah, A.A., Akarun, L.: Feature-based tracking on a multi-omnidirectional camera dataset. In: 2012 5th International Symposium on Communications, Control and Signal Processing, pp. 1–5 (2012). https://doi.org/10.1109/ISCCSP.2012.6217867

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marouane Ghoulami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghoulami, M., Miyara, M., Messaoudi, N., Chiba, Z., Toulni, H., Boudhane, M. (2023). A Recent Review of Video Anomaly Detection for Smart Cities. In: Saeed, F., Mohammed, F., Mohammed, E., Al-Hadhrami, T., Al-Sarem, M. (eds) Advances on Intelligent Computing and Data Science. ICACIn 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-031-36258-3_22

Download citation

Publish with us

Policies and ethics