Abstract
According to Maslow’s hierarchy of needs, safety is a crucial component that must be satisfied before individuals can attend to higher up needs. Therefore, video surveillance systems have become more popular and heavily used in urban areas, expressing people's need for the safety of their lives and goods. However, video surveillance cameras alone cannot serve efficiently this purpose. Thusly, the urge for an automated video surveillance system has emerged to timely detect anomalies and raise early alarms to ensure public safety and security. In this paper, we will be focusing mainly on safety and security in smart cities, as we will be reviewing more precisely recent works related to video anomaly detection in public spaces, we will also provide the reader with a brief dataset benchmarking along with a comparative analysis of state-of-the-art literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Division, U.N.P.: Urban population (% of total population. https://bit.ly/39IhMSK. Accessed 28 Sept 2022
Hollands, R.G.: Will the Real Smart City Please Stand Up? Tylor & Francis Group (2008)
Al Nuaimi, E., Al Neyadi, H., Mohamed, N., Al-Jaroodi, J.: Applications of big data to smart cities. J. Internet Serv. Appl. 6(1), 1–15 (2015). https://doi.org/10.1186/s13174-015-0041-5
Ristvej, J., Lacinák, M., Ondrejka, R.: On smart city and safe city concepts. Mobile Networks Appl. 25(3), 836–845 (2020). https://doi.org/10.1007/s11036-020-01524-4
Lacinák, M., Ristvej, J.: Smart city, safety and security. In: International Scientific Conference on Sustainable, Modern and Safe Transport (2017)
Trivedi, A.J., Mehta, A.: Maslow’s hierarchy of needs - theory of human motivation. Int. J. Res. All Subjects Multi Lang. 7 (2019)
Krishna, A., Pendkar, N., Kasar, S., Mahind, U., Desai, S.: Advanced video surveillance system. In: 2021 3rd International Conference on Signal Processing and Communication (ICPSC), pp. 558–561 (2021). https://doi.org/10.1109/ICSPC51351.2021.9451694
Varadarajan, J., Odobez, J.-M.: Topic models for scene analysis and abnormality detection. In: IEEE 12th International Conference on Computer Vision Workshops, Kyoto (2009)
Popoola, O.P., Wang, K.: Video-based abnormal human behavior recognition—a review. IEEE Trans. Syst. Man Cybern. 42, 11 (2012)
Herbert, J.: To count a crowd. Columbia J. Rev. 6, 37 (1967)
Zhang, M., Li, T., Yu, Y., Li, Y., Hui, P., Zheng, Y.: Urban anomaly analytics: description, detection and prediction. IEEE Trans. Big Data 28, 04 (2020)
Lee, T., Chun, C., Ryu, S.-K.: Detection of road-surface anomalies using a smartphone camera and accelerometer. Sensors. 21 (2021)
Leyva, R., Sanchez, V., Li, C.-T.: Video anomaly detection with compact feature sets for online performance. IEEE Trans. Image Process. 26, 3463–3478 (2017)
Nayak, R., Pati, U.C., Das, S.K.: A comprehensive review on deep learning-based methods for video anomaly detection. Image Vis. Comput. 106 (2021)
Ullah, W., Ullah, A., Hussain, T., Khan, Z.A., Baik, S.W.: An efficient anomaly recognition framework using an attention residual LSTM in surveillance videos. Sensors 21, 2811 (2021)
Azis, F.M.A., Nasrun, M., Setianingsih, C., Murti, M.A.: Face recognition in night day using method eigenface. In: International Conference on Signals and Systems (ICSigSys.), Bali, Indonesia (2018)
Huang, Z., et al.: A benchmark and comparative study of video-based face recognition on COX face database. IEEE Trans. Image Process. 24, 5967–5981 (2015)
Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Technol. 18, 1114–1127 (2008)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)
Parakkal, B.R.K.M.T.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imag. 4, 36 (2018)
Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54, 1–38 (2022)
Sabokrou, M., Fayyaz, M., Fathy, M., Klette, R.: Deep-cascade: cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Trans. Image Process. 26, 1992–2004 (2017)
Wiktorski, T., Demchenko, Y., Belloum, A., Shirazi, A.: Quantitative and qualitative analysis of current data science programs from perspective of data science competence groups and framework. In: 2016 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), pp. 633–638 (2016). https://doi.org/10.1109/CloudCom.2016.0109
Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Relational Learning for Joint Head and Human Detection. arXiv:1909.10674 [cs]. (2019)
Buch, N., Orwell, J., Velastin, S.A.: Urban road user detection and classification using 3D wire frame models. IET Comput. Vis. 4, 105–116 (2010). https://doi.org/10.1049/iet-cvi.2008.0089
Leyva, R., Sanchez, V., Li, C.-T.: The LV dataset: a realistic surveillance video dataset for abnormal event detection. In: 2017 5th International Workshop on Biometrics and Forensics (IWBF), pp. 1–6 (2017). https://doi.org/10.1109/IWBF.2017.7935096
Wu, J., Li, Z., Qu, W., Zhou, Y.: One shot crowd counting with deep scale adaptive neural network. Electronics 8, 701 (2019). https://doi.org/10.3390/electronics8060701
Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: real-time detection of violent crowd behavior. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–6 (2012). https://doi.org/10.1109/CVPRW.2012.6239348
Blunsden, S., Fisher, R.B.: The BEHAVE video dataset: ground truthed video for multi-person (2009)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset, vol. 32 (2013)
Liao, Y., Xie, J., Geiger, A.: KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. arXiv:2109.13410 [cs]. (2021)
Russell, D.M., Gong, S.: Exploiting periodicity in recurrent scenes. In: Proceedings of the British Machine Vision Conference 2008, pp. 71.1–71.10. British Machine Vision Association, Leeds (2008). https://doi.org/10.5244/C.22.71
Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31, 539–555 (2009). https://doi.org/10.1109/TPAMI.2008.87
Shao, J., Kang, K., Loy, C.C., Wang, X.: Deeply learned attributes for crowded scene understanding. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4657–4666 (2015). https://doi.org/10.1109/CVPR.2015.7299097
Sindagi, V., Yasarla, R., Patel, V.: Pushing the frontiers of unconstrained crowd counting: new dataset and benchmark method. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1221–1231 (2019). https://doi.org/10.1109/ICCV.2019.00131
Sindagi, V.A., Yasarla, R., Patel, V.M.: JHU-CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method. arXiv:2004.03597 [cs]. (2020)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 935–942 (2009). https://doi.org/10.1109/CVPR.2009.5206641
Ferryman, J., Shahrokni, A.: PETS2009: dataset and challenge. In: 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–6 (2009). https://doi.org/10.1109/PETS-WINTER.2009.5399556
Loy, C.C., Chen, K., Gong, S., Xiang, T.: Crowd counting and profiling: methodology and evaluation. In: Ali, S., Nishino, K.,Manocha, D., Shah, M. (eds.) Modeling, Simulation and Visual Analysis of Crowds. TISVC, vol. 11, pp. 347–382. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8483-7_14
CAVIAR: Context Aware Vision using Image-based Active Recognition. https://homepages.inf.ed.ac.uk/rbf/CAVIAR/. Accessed 28 Sept 2022
Avenue Dataset. http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html. Accessed 28 Sept 2022
UCSD Anomaly Detection Dataset. http://www.svcl.ucsd.edu/projects/anomaly/dataset.html. Accessed 28 Sept 2022
UR Fall Detection Dataset. http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html. Accessed 31 Oct 2021
Multiple cameras fall dataset. http://www.iro.umontreal.ca/~labimage/Dataset/. Accessed 28 Sept 2022
Detecting Irregularities in images and in Video. https://www.wisdom.weizmann.ac.il/~vision/Irregularities.html. Accessed 28 Sept 2022
Monitoring Human Activity – Home. http://mha.cs.umn.edu/. Accessed 28 Sept 2022
SDHA 2010 High-level Human Interaction Recognition Challenge. https://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html. Accessed 28 Sept 2022
Demiröz, B.E., Ari, İ., Eroğlu, O., Salah, A.A., Akarun, L.: Feature-based tracking on a multi-omnidirectional camera dataset. In: 2012 5th International Symposium on Communications, Control and Signal Processing, pp. 1–5 (2012). https://doi.org/10.1109/ISCCSP.2012.6217867
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ghoulami, M., Miyara, M., Messaoudi, N., Chiba, Z., Toulni, H., Boudhane, M. (2023). A Recent Review of Video Anomaly Detection for Smart Cities. In: Saeed, F., Mohammed, F., Mohammed, E., Al-Hadhrami, T., Al-Sarem, M. (eds) Advances on Intelligent Computing and Data Science. ICACIn 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-031-36258-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-36258-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36257-6
Online ISBN: 978-3-031-36258-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)