Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Semantic Query Engine for Knowledge Rich Legal Digital Libraries

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2022)

Abstract

Contemporary legal digital libraries such as Lexis Nexis and WestLaw allow users to search case laws using sophisticated search tools. The sophistication of these legal search tools, however, vary widely between commercial and non-commercial libraries, and by user groups. At its core, various forms of keyword search and indexing are used to find documents of interest. While newer search engines leveraging semantic technologies such as knowledgebases, natural language processing, and knowledge graphs are becoming available, legal databases are yet to take advantage of them fully. Even more scarce is any search engine able to support reasoning to identify legal documents based on legal precedent matching. In this paper, we introduce an experimental legal document search engine, called Prism, that is capable of supporting legal argument based search to support legal claims. We use a document engineering method to embed legal premise graphs, called the AND-OR graph, in the document to facilitate semantic match. A prototype implementation of Prism as a component of a document management system, called VOiC, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.courts.state.va.us/opinions/opncavwp/2654044.pdf.

  2. 2.

    http://touchngo.com/sp/html/sp-4293.htm.

  3. 3.

    http://www.courts.state.va.us/opinions/opncavwp/2510061.pdf.

  4. 4.

    http://www.courts.state.va.us/opinions/opncavwp/1079041.pdf.

  5. 5.

    https://www.michbar.org/opinions/appeals/2007/081407/36789.pdf.

  6. 6.

    http://www.michbar.org/opinions/appeals/2005/030105/26467.pdf.

  7. 7.

    jurisdiction/4 means the predicate jurisdiction has four arguments.

References

  1. Asiri, Y.: Short text mining for classifying educational objectives and outcomes. Comput. Syst. Sci. Eng. 41(1), 35–50 (2022)

    Article  Google Scholar 

  2. Aso, T., Amagasa, T., Kitagawa, H.: A method for searching documents using knowledge bases. In: Pardede, E., Indrawan-Santiago, M., Haghighi, P.D., Steinbauer, M., Khalil, I., Kotsis, G. (eds.) iiWAS2021: The 23rd International Conference on Information Integration and Web Intelligence, Linz, Austria, 29 November 2021–1 December 2021, pp. 250–258. ACM (2021)

    Google Scholar 

  3. Cavallo, G., Mauro, F.D., Pasteris, P., Sapino, M.L., Candan, K.S.: Crowd sourced semantic enrichment (CroSSE) for knowledge driven querying of digital resources. J. Intell. Inf. Syst. 53(3), 453–480 (2019)

    Article  Google Scholar 

  4. Charalampous, A., Knoth, P.: Classifying document types to enhance search and recommendations in digital libraries. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.) TPDL 2017. LNCS, vol. 10450, pp. 181–192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67008-9_15

    Chapter  Google Scholar 

  5. V. Constitution. Uniform child custody jurisdiction and enforcement act. https://law.lis.virginia.gov/vacode/title20/chapter7.1/. Accessed 18 Aug 2022

  6. de Lourdes da Silveira, M., Ribeiro-Neto, B., de Freitas Vale, R., Tôrres Assumpção, R.: Vertical searching in juridical digital libraries. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 491–501. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36618-0_35

    Chapter  MATH  Google Scholar 

  7. Dhani, J.S., Bhatt, R., Ganesan, B., Sirohi, P., Bhatnagar, V.: Similar cases recommendation using legal knowledge graphs. CoRR, abs/2107.04771 (2021)

    Google Scholar 

  8. Duggan, B., O’Shea, B.: Tunepal: searching a digital library of traditional music scores. OCLC Syst. Serv. 27(4), 284–297 (2011)

    Article  Google Scholar 

  9. Filtz, E.: Building and processing a knowledge-graph for legal data. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_13

    Chapter  Google Scholar 

  10. Heidari, G., Ramadan, A., Stocker, M., Auer, S.: Leveraging a federation of knowledge graphs to improve faceted search in digital libraries. In: Berget, G., Hall, M.M., Brenn, D., Kumpulainen, S. (eds.) TPDL 2021. LNCS, vol. 12866, pp. 141–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86324-1_18

    Chapter  Google Scholar 

  11. Hompes, B.F.A., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Discovering causal factors explaining business process performance variation. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 177–192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_12

    Chapter  Google Scholar 

  12. Huynh, T.T., Do, N.V., Pham, T.N., Tran, N.T.: A semantic document retrieval system with semantic search technique based on knowledge base and graph representation. In: Fujita, H., Herrera-Viedma, E. (eds.) New Trends in Intelligent Software Methodologies, Tools and Techniques - Proceedings of the 17th International Conference SoMeT_18, Granada, Spain, 26–28 September 2018. Frontiers in Artificial Intelligence and Applications, vol. 303, pp. 870–882. IOS Press (2018)

    Google Scholar 

  13. Ignaczak, L., Goldschmidt, G., da Costa, C.A., da Rosa Righi, R.: Text mining in cybersecurity: a systematic literature review. ACM Comput. Surv. 54(7),140:1–140:36 (2022)

    Google Scholar 

  14. Ipeirotis, P.G.: Searching digital libraries. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, 2nd edn., pp. 2518–2521. Springer, Boston (2018). https://doi.org/10.1007/978-0-387-39940-9_327

    Chapter  Google Scholar 

  15. Crotti Junior, A., et al.: Knowledge graph-based legal search over German court cases. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12124, pp. 293–297. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62327-2_44

    Chapter  Google Scholar 

  16. Bloehdorn, S., et al.: Ontology-based question answering for digital libraries. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 14–25. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74851-9_2

    Chapter  Google Scholar 

  17. Kumpulainen, S.W., Kautonen, H.: Accidentally successful searching: users’ perceptions of a digital library. In: Nordlie, R., Pharo, N., Freund, L., Larsen, B., Russel, D. (eds.) Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, CHIIR 2017, Oslo, Norway, 7–11 March 2017, pp. 257–260. ACM (2017)

    Google Scholar 

  18. Oviedo, A., Kasioumis, N., Aberer, K.: \(5{\rm e}^{ \{\text{x}+\text{ y }\}}\): searching over mathematical content in digital libraries. In: Bogen, P.L., II., et al. (eds.) Proceedings of the 15th ACM/IEEE-CE Joint Conference on Digital Libraries, Knoxville, TN, USA, 21–25 June 2015, pp. 283–284. ACM (2015)

    Google Scholar 

  19. Roychowdhury, D., Gupta, S., Qin, X., Arighi, C.N., Vijay-Shanker, K.: emiRIT: a text-mining-based resource for microRNA information. Database J. Biol. Databases Curation 2021 (2021)

    Google Scholar 

  20. Sarode, R.P., Sachdeva, S., Chu, W., Bhalla, S.: Segment-search vs knowledge graphs: making a key-word search engine for web documents. In: Madria, S., Fournier-Viger, P., Chaudhary, S., Reddy, P.K. (eds.) BDA 2019. LNCS, vol. 11932, pp. 88–107. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37188-3_6

    Chapter  Google Scholar 

  21. Sarrafzadeh, B., Vechtomova, O.: Combining document retrieval with knowledge graphs for exploratory search. In: Elsweiler, D., Ludwig, B., Azzopardi, L., Wilson, M.L. (eds.) Fifth Information Interaction in Context Symposium, IIiX 2014, Regensburg, Germany, 26–29 August 2014, pp. 345–347. ACM (2014)

    Google Scholar 

  22. Sovrano, F., Palmirani, M., Vitali, F.: Legal knowledge extraction for knowledge graph based question-answering. In: Villata, S., Harasta, J., Kremen, P. (eds.) Legal Knowledge and Information Systems, JURIX 2020: The Thirty-Third Annual Conference, Brno, Czech Republic, 9–11 December 2020. Frontiers in Artificial Intelligence and Applications, vol. 334, pp. 143–153. IOS Press (2020)

    Google Scholar 

  23. Thagard, P.: Causal inference in legal decision making: explanatory coherence vs. Bayesian networks. Appl. Artif. Intell. 18(3–4), 231–249 (2004)

    Article  Google Scholar 

  24. Xu, W., Chen, H., Huan, Y., Hu, X., Nong, G.: Full-text search engine with suffix index for massive heterogeneous data. Inf. Syst. 104, 101893 (2022)

    Article  Google Scholar 

  25. Yellepeddi, V., Manimegalai, P., Suvanam, S.B.: Accurate approach towards efficiency of searching agents in digital libraries using keywords. J. Medical Syst. 43(6), 164:1–164:6 (2019)

    Google Scholar 

  26. Yu, H., Zhou, Q., Liu, M.: A dynamic composite web services selection method with QoS-aware based on AND/OR graph. Int. J. Comput. Intell. Syst. 7(4), 660–675 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This publication was partially made possible by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #P20GM103408. We acknowledge that Hayden Carroll, Austin Kugler, and Kallol Naha helped build parts of first edition of the VOiC and the Prism systems as a class research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan M. Jamil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamil, H.M. (2023). A Semantic Query Engine for Knowledge Rich Legal Digital Libraries. In: Lossio-Ventura, J.A., Valverde-Rebaza, J., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2022. Communications in Computer and Information Science, vol 1837. Springer, Cham. https://doi.org/10.1007/978-3-031-35445-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35445-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35444-1

  • Online ISBN: 978-3-031-35445-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics