Abstract
Contemporary legal digital libraries such as Lexis Nexis and WestLaw allow users to search case laws using sophisticated search tools. The sophistication of these legal search tools, however, vary widely between commercial and non-commercial libraries, and by user groups. At its core, various forms of keyword search and indexing are used to find documents of interest. While newer search engines leveraging semantic technologies such as knowledgebases, natural language processing, and knowledge graphs are becoming available, legal databases are yet to take advantage of them fully. Even more scarce is any search engine able to support reasoning to identify legal documents based on legal precedent matching. In this paper, we introduce an experimental legal document search engine, called Prism, that is capable of supporting legal argument based search to support legal claims. We use a document engineering method to embed legal premise graphs, called the AND-OR graph, in the document to facilitate semantic match. A prototype implementation of Prism as a component of a document management system, called VOiC, is also discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
jurisdiction/4 means the predicate jurisdiction has four arguments.
References
Asiri, Y.: Short text mining for classifying educational objectives and outcomes. Comput. Syst. Sci. Eng. 41(1), 35–50 (2022)
Aso, T., Amagasa, T., Kitagawa, H.: A method for searching documents using knowledge bases. In: Pardede, E., Indrawan-Santiago, M., Haghighi, P.D., Steinbauer, M., Khalil, I., Kotsis, G. (eds.) iiWAS2021: The 23rd International Conference on Information Integration and Web Intelligence, Linz, Austria, 29 November 2021–1 December 2021, pp. 250–258. ACM (2021)
Cavallo, G., Mauro, F.D., Pasteris, P., Sapino, M.L., Candan, K.S.: Crowd sourced semantic enrichment (CroSSE) for knowledge driven querying of digital resources. J. Intell. Inf. Syst. 53(3), 453–480 (2019)
Charalampous, A., Knoth, P.: Classifying document types to enhance search and recommendations in digital libraries. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.) TPDL 2017. LNCS, vol. 10450, pp. 181–192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67008-9_15
V. Constitution. Uniform child custody jurisdiction and enforcement act. https://law.lis.virginia.gov/vacode/title20/chapter7.1/. Accessed 18 Aug 2022
de Lourdes da Silveira, M., Ribeiro-Neto, B., de Freitas Vale, R., Tôrres Assumpção, R.: Vertical searching in juridical digital libraries. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 491–501. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36618-0_35
Dhani, J.S., Bhatt, R., Ganesan, B., Sirohi, P., Bhatnagar, V.: Similar cases recommendation using legal knowledge graphs. CoRR, abs/2107.04771 (2021)
Duggan, B., O’Shea, B.: Tunepal: searching a digital library of traditional music scores. OCLC Syst. Serv. 27(4), 284–297 (2011)
Filtz, E.: Building and processing a knowledge-graph for legal data. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58451-5_13
Heidari, G., Ramadan, A., Stocker, M., Auer, S.: Leveraging a federation of knowledge graphs to improve faceted search in digital libraries. In: Berget, G., Hall, M.M., Brenn, D., Kumpulainen, S. (eds.) TPDL 2021. LNCS, vol. 12866, pp. 141–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86324-1_18
Hompes, B.F.A., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Discovering causal factors explaining business process performance variation. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 177–192. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_12
Huynh, T.T., Do, N.V., Pham, T.N., Tran, N.T.: A semantic document retrieval system with semantic search technique based on knowledge base and graph representation. In: Fujita, H., Herrera-Viedma, E. (eds.) New Trends in Intelligent Software Methodologies, Tools and Techniques - Proceedings of the 17th International Conference SoMeT_18, Granada, Spain, 26–28 September 2018. Frontiers in Artificial Intelligence and Applications, vol. 303, pp. 870–882. IOS Press (2018)
Ignaczak, L., Goldschmidt, G., da Costa, C.A., da Rosa Righi, R.: Text mining in cybersecurity: a systematic literature review. ACM Comput. Surv. 54(7),140:1–140:36 (2022)
Ipeirotis, P.G.: Searching digital libraries. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, 2nd edn., pp. 2518–2521. Springer, Boston (2018). https://doi.org/10.1007/978-0-387-39940-9_327
Crotti Junior, A., et al.: Knowledge graph-based legal search over German court cases. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12124, pp. 293–297. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62327-2_44
Bloehdorn, S., et al.: Ontology-based question answering for digital libraries. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 14–25. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74851-9_2
Kumpulainen, S.W., Kautonen, H.: Accidentally successful searching: users’ perceptions of a digital library. In: Nordlie, R., Pharo, N., Freund, L., Larsen, B., Russel, D. (eds.) Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, CHIIR 2017, Oslo, Norway, 7–11 March 2017, pp. 257–260. ACM (2017)
Oviedo, A., Kasioumis, N., Aberer, K.: \(5{\rm e}^{ \{\text{x}+\text{ y }\}}\): searching over mathematical content in digital libraries. In: Bogen, P.L., II., et al. (eds.) Proceedings of the 15th ACM/IEEE-CE Joint Conference on Digital Libraries, Knoxville, TN, USA, 21–25 June 2015, pp. 283–284. ACM (2015)
Roychowdhury, D., Gupta, S., Qin, X., Arighi, C.N., Vijay-Shanker, K.: emiRIT: a text-mining-based resource for microRNA information. Database J. Biol. Databases Curation 2021 (2021)
Sarode, R.P., Sachdeva, S., Chu, W., Bhalla, S.: Segment-search vs knowledge graphs: making a key-word search engine for web documents. In: Madria, S., Fournier-Viger, P., Chaudhary, S., Reddy, P.K. (eds.) BDA 2019. LNCS, vol. 11932, pp. 88–107. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37188-3_6
Sarrafzadeh, B., Vechtomova, O.: Combining document retrieval with knowledge graphs for exploratory search. In: Elsweiler, D., Ludwig, B., Azzopardi, L., Wilson, M.L. (eds.) Fifth Information Interaction in Context Symposium, IIiX 2014, Regensburg, Germany, 26–29 August 2014, pp. 345–347. ACM (2014)
Sovrano, F., Palmirani, M., Vitali, F.: Legal knowledge extraction for knowledge graph based question-answering. In: Villata, S., Harasta, J., Kremen, P. (eds.) Legal Knowledge and Information Systems, JURIX 2020: The Thirty-Third Annual Conference, Brno, Czech Republic, 9–11 December 2020. Frontiers in Artificial Intelligence and Applications, vol. 334, pp. 143–153. IOS Press (2020)
Thagard, P.: Causal inference in legal decision making: explanatory coherence vs. Bayesian networks. Appl. Artif. Intell. 18(3–4), 231–249 (2004)
Xu, W., Chen, H., Huan, Y., Hu, X., Nong, G.: Full-text search engine with suffix index for massive heterogeneous data. Inf. Syst. 104, 101893 (2022)
Yellepeddi, V., Manimegalai, P., Suvanam, S.B.: Accurate approach towards efficiency of searching agents in digital libraries using keywords. J. Medical Syst. 43(6), 164:1–164:6 (2019)
Yu, H., Zhou, Q., Liu, M.: A dynamic composite web services selection method with QoS-aware based on AND/OR graph. Int. J. Comput. Intell. Syst. 7(4), 660–675 (2014)
Acknowledgement
This publication was partially made possible by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #P20GM103408. We acknowledge that Hayden Carroll, Austin Kugler, and Kallol Naha helped build parts of first edition of the VOiC and the Prism systems as a class research project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jamil, H.M. (2023). A Semantic Query Engine for Knowledge Rich Legal Digital Libraries. In: Lossio-Ventura, J.A., Valverde-Rebaza, J., Díaz, E., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2022. Communications in Computer and Information Science, vol 1837. Springer, Cham. https://doi.org/10.1007/978-3-031-35445-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-35445-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-35444-1
Online ISBN: 978-3-031-35445-8
eBook Packages: Computer ScienceComputer Science (R0)