Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lessons Learned in Model-Based Reverse Engineering of Large Legacy Systems

  • Conference paper
  • First Online:
Advanced Information Systems Engineering (CAiSE 2023)

Abstract

Large technologies companies that offer software modernization and maintenance services for legacy software applications in diverse sectors such as banking, insurance, healthcare and public sector, face a significant challenge. Legacy systems were usually developed in old programming languages, often have outdated documentation and the processes used for software development were immature. Modernization and maintenance projects include tasks such as source code analysis with high effort and time costs, and an important risk of misunderstanding. In the literature, model-driven reverse engineering (MDRE) approaches promise to address these challenges successfully, but most of existing proposals are focused on a concrete technological stack. This paper aims to present the preliminary results and lessons learned when adopting MDRE in a large multinational company, providing a series of reflections and open issues to reduce the gap between academia and industry. It introduces STRATO, a corporate solution that proposes a MDRE approach focused on a high flexibility to incorporate new programming languages. It reads source code and through model-to-model transformations convert it into platform independent conceptual, persistence and business logic models. Preliminary outcomes, lessons learned and open issues concerning MDRE industry adoption are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ruiz, F.: An approach for model-driven data reengineering (Doctoral dissertation, PhD dissertation, University of Murcia) (2016)

    Google Scholar 

  2. Object Management Group, Inc. Object Management Group (2012). http://www.omg.org

  3. Raibulet, C., Fontana, F.A., Zanoni, M.: Model-driven reverse engineering approaches: a systematic literature review. IEEE Access 5, 14516–14542 (2017)

    Article  Google Scholar 

  4. Rugaber, S., Stirewalt, K.: Model-driven reverse engineering. IEEE Software 21(4), 45–53 (2004)

    Article  Google Scholar 

  5. Favre, J.M.: Foundations of model (Driven)(Reverse) engineering: models-Episode I: stories of the fidus papyrus and of the solarus. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2005)

    Google Scholar 

  6. Object Management Group, Inc. Arquitecture Driven Modernization Task Force (2022). https://www.omg.org/adm/

  7. Pérez-Castillo, R., de Guzmán, I.G.-R., Piattini, M.: Knowledge discovery metamodel-ISO/IEC 19506: a standard to modernize legacy systems. Comput. Stand. Interf. 33(6), 519–532 (2011)

    Article  Google Scholar 

  8. Object Management Group, Architecture-Driven Modernization: Abstract Syntax Tree Metamodel (ASTM), OMG document number: formal/2011-01-05 (2011)

    Google Scholar 

  9. Object Management Group, Automated Source Code Maintainability Measure TM (ASCMM TM), OMG document number: formal/2016-01-01 (2016)

    Google Scholar 

  10. Object Management Group, Structured Patterns Metamodel Standard (SPMS), OMG document number: formal/2011-01-05 (2017)

    Google Scholar 

  11. Object Management Group, Structured Metrics Metamodel (SMM), OMG document number: formal/2018-03-01 (2018)

    Google Scholar 

  12. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: a model driven reverse engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

    Article  Google Scholar 

  13. Tonella, P., Torchiano, M., Du Bois, B., Systä, T.: Empirical studies in reverse engineering: state of the art and future trends. Empirical Softw. Eng. 12, 551–571 (2007)

    Article  Google Scholar 

  14. Pascal, A.: Case studies in model-driven reverse engineering. In: Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development, pp. 256–263. SCITEPRESS-Science and Technology Publications, Lda (2019)

    Google Scholar 

  15. Baqais, A.A.B., Alshayeb, M.: Automatic software refactoring: a systematic literature review. Softw. Q. J. 28(2), 459–502 (2020)

    Article  Google Scholar 

  16. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a library for implementing analyses and transformations of java source code. Softw. Pract. Experience 46(9), 1155–1179 (2016)

    Google Scholar 

  17. coAST coala Abstract Syntax Tree https://github.com/coala/coAST

  18. Izquierdo, J.L.C., Cuadrado, J.S., Molina, J.G.: Gra2MoL: a domain specific transformation language for bridging grammarware to modelware in software modernization. In: Workshop on Model-Driven Software Evolution, pp. 1–8 (2008)

    Google Scholar 

  19. Iung, A., et al.: Systematic mapping study on domain-specific language development tools. Empirical Softw. Eng. 25(5), 4205–4249 (2020). https://doi.org/10.1007/s10664-020-09872-1

    Article  Google Scholar 

  20. Maróti, M., et al.: Next generation (meta) modeling: web-and cloud-based collaborative tool infrastructure. MPM@ MoDELS 1237, 41–60 (2014)

    Google Scholar 

  21. AToMPM: a tool for multi-paradigm modeling. (n.d.). https://atompm.github.io/

  22. Pyro: a collaborative, meta-model-driven, Web-based and graphical modeling environment. (n.d.). https://pyro.scce.info/

  23. Eclipse foundation. (n.d.). Eclipse modeling framework in cloud. https://www.eclipse.org/emfcloud/

  24. Eclipse foundation. (n.d.). Sirius web. https://www.eclipse.org/sirius/sirius-web.html

  25. Eclipse foundation. (n.d.). Graphical language server platform for building web-based diagram editors. https://github.com/eclipse-glsp/glsp

  26. Theia - cloud and desktop IDE platform. (n.d.). https://theia-ide.org/

  27. Glaser, P.L.: Developing sprotty-based modeling tools for VS code (2022)

    Google Scholar 

  28. Object management group, Meta object facility (MOF) Core specification, version 2.5.1. OMG document number: formal/2019-10-01 (2016)

    Google Scholar 

  29. Parr, T.: The definitive ANTLR 4 reference. In: The Definitive ANTLR 4 Reference, pp. 1–326 (2013)

    Google Scholar 

  30. ISIS/Vanderbilt university, WebGME Documentation, Release 1.0.0 (2022)

    Google Scholar 

  31. Campbell, G.A., Papapetrou, P.: SonarQube in action. Manning Publications Co, Shelter Island (2013)

    Google Scholar 

  32. OpenAPI initiative, OpenAPI specification v3.1.0 (2021). https://spec.openapis.org/oas/v3.0.1

  33. OpenAPI initiative, OpenAPI tools (2022). https://openapi.tools/

  34. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Springer Science & Business Media (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Centro para el Desarrollo Tecnológico Industrial (CDTI) under Grant IDI-20210948 (STRATO, nuevaS herramienTas para la modeRnizAción de sisTemas heredadOs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura García-Borgoñón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Borgoñón, L., Barcelona, M.A., Egea, A.J., Reyes, G., Sainz-de-la-maza, A., González-Uzabal, A. (2023). Lessons Learned in Model-Based Reverse Engineering of Large Legacy Systems. In: Indulska, M., Reinhartz-Berger, I., Cetina, C., Pastor, O. (eds) Advanced Information Systems Engineering. CAiSE 2023. Lecture Notes in Computer Science, vol 13901. Springer, Cham. https://doi.org/10.1007/978-3-031-34560-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34560-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34559-3

  • Online ISBN: 978-3-031-34560-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics