Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimized Stochastic Approaches Based on Sobol Quasirandom Sequences for Fredholm Integral Equations of the Second Kind

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2022)

Abstract

In this paper three possible approaches to compute linear functionals of the solution of the Fredholm integral equation of the second kind are under consideration: a biased Monte Carlo method based on evaluation of truncated Liouville-Neumann series; transformation of this problem into the problem of computing a finite number of integrals, and an unbiased stochastic approach. In the second case several Monte Carlo algorithms for numerical integration have been applied including optimized stochastic approaches developed in our previous studies. The unbiased stochastic approach has been applied to a multidimensional numerical example. A comprehensive analysis about the reliability and the efficiency of the algorithms has been done.

The presented work was supported by the Bulgarian National Science Fund under the Bilateral Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications”, Project KP-06-N52/5 “Efficient methods for modeling, optimization and decision making” and Project KP-06-N62/6 “Machine learning through physics-informed neural networks”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bradley, P., Fox, B.: Algorithm 659: implementing Sobol’s quasi random sequence generator. ACM Trans. Math. Software 14(1), 88–100 (1988)

    Article  Google Scholar 

  2. Curtiss, J.H.: Monte Carlo methods for the iteration of linear operators. J. Math Phys. 32, 209–232 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dimov, I.: Monte Carlo methods for applied scientists., World Scientific, New Jersey, London, Singapore, World Scientific (2008). 291p., ISBN-10 981–02-2329-3

    Google Scholar 

  4. Dimov, I.T., Georgieva, R.: Multidimensional sensitivity analysis of large-scale mathematical models. In: Iliev, O.P., et al. (eds.) Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Mathematics and Statistics, vol. 45, pp. 137–156. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7172-1_8, ISBN: 978-1-4614-7171-4 (book chapter)

  5. Dimov, I., Georgieva, R.: Monte Carlo method for numerical integration based on Sobol’s sequences. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 50–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18466-6_5

    Chapter  MATH  Google Scholar 

  6. Dimov, I.T., Georgieva, R., Ostromsky, Tz., Zlatev, Z.: Advanced algorithms for multidimensional sensitivity studies of large-scale air pollution models based on Sobol sequences, Computers and Math. Appl. 65(3), 338–351 (2013). "Efficient Numerical Methods for Scientific Applications", Elsevier

    Google Scholar 

  7. Dimov, I.T., Maire, S.: A new unbiased stochastic algorithm for solving linear Fredholm equations of the second kind. Adv. Comput. Math. 45(3), 1499–1519 (2019). https://doi.org/10.1007/s10444-019-09676-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Dimov, I.T., Maire, S., Sellier, J.M.: A new walk on equations monte carlo method for solving systems of linear algebraic equations. Appl. Math. Modelling (2014). https://doi.org/10.1016/j.apm.2014.12.018

  9. Farnoosh, R., Ebrahimi, M.: Monte Carlo method for solving Fredholm integral equations of the second kind. Appl. Math. Comput. 195, 309–315 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods. Wiley-VCH (2008). ISBN 978-3-527-40760-6

    Google Scholar 

  11. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30, 51–70 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Saito, M., Matsumoto, M.: SIMD-oriented fast Mersenne Twister: a 128-bit pseudorandom number generator. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 607–622. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74496-2_36

  13. Sobol, I., Asotsky, D., Kreinin, A., Kucherenko, S.: Construction and comparison of high-dimensional Sobol’ generators. Wilmott J. 67–79 (2011)

    Google Scholar 

  14. Sobol, I.M.: Monte Carlo Numerical Methods. Nauka, Moscow (1973). (in Russian)

    MATH  Google Scholar 

  15. Sobol, I.M.: On quadratic formulas for functions of several variables satisfying a general Lipschitz condition. USSR Comput. Math. and Math. Phys. 29(6), 936–941 (1989)

    Google Scholar 

  16. Weyl, H.: Ueber die Gleichverteilung von Zahlen mod Eins. Math. Ann. 77(3), 313–352 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  17. www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html

Download references

Acknowledgements

The authors thanks to Prof. Sylvain Maire for the useful discussion regarding the USA method. The presented work was supported by the Bulgarian National Science Fund under the Bilateral Project KP-06-Russia/17 “New Highly Efficient Stochastic Simulation Methods and Applications”. Venelin Todorov is supported by the BNSF under Projects KP-06-N52/5 “Efficient methods for modeling, optimization and decision making” and KP-06-N62/6 “Machine learning through physics-informed neural networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venelin Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Todorov, V., Dimov, I., Georgieva, R., Ostromsky, T. (2023). Optimized Stochastic Approaches Based on Sobol Quasirandom Sequences for Fredholm Integral Equations of the Second Kind. In: Georgiev, I., Datcheva, M., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2022. Lecture Notes in Computer Science, vol 13858. Springer, Cham. https://doi.org/10.1007/978-3-031-32412-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32412-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32411-6

  • Online ISBN: 978-3-031-32412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics