Nothing Special   »   [go: up one dir, main page]

Skip to main content

CLEF 2023 SimpleText Track

What Happens if General Users Search Scientific Texts?

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2023)

Abstract

The general public tends to avoid reliable sources such as scientific literature due to their complex language and lacking background knowledge. Instead, they rely on shallow and derived sources on the web and in social media – often published for commercial or political incentives, rather than the informational value. Can text simplification help to remove some of these access barriers? This paper presents the CLEF 2023 SimpleText track tackling technical and evaluation challenges of scientific information access for a general audience. We provide appropriate reusable data and benchmarks for scientific text simplification, and promote novel research to reduce barriers in understanding complex texts. Our overall use-case is to create a simplified summary of multiple scientific documents based on a popular science query which provides a user with an accessible overview on this specific topic. The track has the following three concrete tasks. Task 1 (What is in, or out?): Selecting passages to include in a simplified summary. Task 2 (What is unclear?): Difficult concept identification and explanation. Task 3 (Rewrite this!): Text simplification - rewriting scientific text. The three tasks together form a pipeline of a scientific text simplification system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sdproc.org/2022/sharedtasks.html.

  2. 2.

    https://taln.upf.edu/pages/tsar2022-st/.

  3. 3.

    https://www.aminer.cn/citation.

  4. 4.

    https://techxplore.com/.

  5. 5.

    https://www.sciencedirect.com/.

References

  1. August, T., Reinecke, K., Smith, N.A.: Generating scientific definitions with controllable complexity. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8298–8317 (2022)

    Google Scholar 

  2. Bott, S., Saggion, H.: An unsupervised alignment algorithm for text simplification corpus construction. In: Proceedings of the Workshop on Monolingual Text-To-Text Generation, pp. 20–26 (2011)

    Google Scholar 

  3. Cardon, R., Grabar, N.: French biomedical text simplification: when small and precise helps. In: Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, pp. 710–716. International Committee on Computational Linguistics (2020). https://www.aclweb.org/anthology/2020.coling-main.62

  4. Chandrasekaran, M.K., et al.: Overview of the first workshop on scholarly document processing (SDP). In: Proceedings of the First Workshop on Scholarly Document Processing, pp. 1–6. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.sdp-1.1. https://aclanthology.org/2020.sdp-1.1/

  5. Chen, P., Rochford, J., Kennedy, D.N., Djamasbi, S., Fay, P., Scott, W.: Automatic text simplification for people with intellectual disabilities. In: Artificial Intelligence Science and Technology, pp. 725–731. World Scientific (2016). https://www.worldscientific.com/doi/abs/10.1142/9789813206823_0091

  6. Cruz, F., Coustaty, M., Augereau, O., Kise, K., Journet, N.: An interactive recommendation system for 2nd language vocabulary learning-vocabulometer 2.0. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 3, pp. 28–32. IEEE (2019)

    Google Scholar 

  7. Ermakova, L., et al.: Overview of SimpleText 2021 - CLEF workshop on text simplification for scientific information access. In: Candan, K.S., et al. (eds.) CLEF 2021. LNCS, vol. 12880, pp. 432–449. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85251-1_27

    Chapter  Google Scholar 

  8. Ermakova, L., et al.: Automatic simplification of scientific texts: SimpleText lab at CLEF-2022. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13186, pp. 364–373. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99739-7_46

    Chapter  Google Scholar 

  9. Ermakova, L., Ovchinnikova, I., Kamps, J., Nurbakova, D., Araújo, S., Hannachi, R.: Overview of the CLEF 2022 SimpleText task 2: complexity spotting in scientific abstracts. In: Faggioli et al. [12]

    Google Scholar 

  10. Ermakova, L., Ovchinnikova, I., Kamps, J., Nurbakova, D., Araújo, S., Hannachi, R.: Overview of the CLEF 2022 SimpleText task 3: query biased simplification of scientific texts. In: Faggioli et al. [12]

    Google Scholar 

  11. Ermakova, L., et al.: Overview of the CLEF 2022 SimpleText lab: automatic simplification of scientific texts. In: Barrón-Cedeño, A., et al. (eds.) CLEF 2022. LNCS, vol. 13390, pp. 470–494. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13643-6_28

    Chapter  Google Scholar 

  12. Faggioli, G., Ferro, N., Hanbury, A., Potthast, M. (eds.): Proceedings of the Working Notes of CLEF 2022: Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings (2022)

    Google Scholar 

  13. Gala, N., Tack, A., Javourey-Drevet, L., François, T., Ziegler, J.C.: Alector: a parallel corpus of simplified French texts with alignments of misreadings by poor and dyslexic readers. In: Language Resources and Evaluation for Language Technologies (LREC) (2020)

    Google Scholar 

  14. Grabar, N., Saggion, H.: Evaluation of automatic text simplification: where are we now, where should we go from here. In: Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1: conférence principale, pp. 453–463 (2022)

    Google Scholar 

  15. Inui, K., Fujita, A., Takahashi, T., Iida, R., Iwakura, T.: Text simplification for reading assistance: a project note. In: Proceedings of the Second International Workshop on Paraphrasing - Volume 16, PARAPHRASE 2003, pp. 9–16. ACL, USA (2003). https://doi.org/10.3115/1118984.1118986

  16. Kochmar, E., Gooding, S., Shardlow, M.: Detecting multiword expression type helps lexical complexity assessment. In: LREC 2020: Proceedings of the 12th Conference on Language Resources and Evaluation (2020)

    Google Scholar 

  17. Monteiro, J., Aguiar, M., Araújo, S.: Using a pre-trained SimpleT5 model for text simplification in a limited corpus. In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, Bologna, Italy, 5–8 September 2022, Bologna, Italy. CEUR Workshop Proceedings, CEUR-WS.org (2022)

    Google Scholar 

  18. Mostert, F., Sampatsing, A., Spronk, M., Kamps, J.: University of Amsterdam at the CLEF 2022 SimpleText track. In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, Bologna, Italy, 5–8 September 2022, Bologna, Italy. CEUR Workshop Proceedings, CEUR-WS.org (2022)

    Google Scholar 

  19. Nakatani, M., Jatowt, A., Tanaka, K.: Easiest-first search: towards comprehension-based web search. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 2057–2060 (2009)

    Google Scholar 

  20. Navigli, R., Velardi, P.: Learning word-class lattices for definition and hypernym extraction. In: ACL, pp. 1318–1327 (2010)

    Google Scholar 

  21. Ravana, S.D., Moffat, A.: Score aggregation techniques in retrieval experimentation. In: Proceedings of the Twentieth Australasian Conference on Australasian Database, vol. 92, pp. 57–66 (2009)

    Google Scholar 

  22. Rello, L., Baeza-Yates, R., Bott, S., Saggion, H.: Simplify or help? Text simplification strategies for people with dyslexia. In: Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility, pp. 1–10 (2013)

    Google Scholar 

  23. Rigouts Terryn, A., Hoste, V., Drouin, P., Lefever, E.: Termeval 2020: shared task on automatic term extraction using the annotated corpora for term extraction research (ACTER) dataset. In: 6th International Workshop on Computational Terminology (COMPUTERM 2020), pp. 85–94. European Language Resources Association (ELRA) (2020)

    Google Scholar 

  24. Robertson, S., Zaragoza, H., et al.: The probabilistic relevance framework: BM25 and beyond. Found. Trends® Inf. Retrieval 3(4), 333–389 (2009)

    Google Scholar 

  25. Rubio, A., Martínez, P.: HULAT-UC3M at SimpleText@CLEF-2022: scientific text simplification using BART. In: Proceedings of the Working Notes of CLEF 2022 - Conference and Labs of the Evaluation Forum, Bologna, Italy, 5–8 September 2022. CEUR Workshop Proceedings, CEUR-WS.org (2022)

    Google Scholar 

  26. SanJuan, E., Huet, S., Kamps, J., Ermakova, L.: Overview of the CLEF 2022 SimpleText task 1: passage selection for a simplified summary. In: Faggioli et al. [12]

    Google Scholar 

  27. Sheang, K.C., Saggion, H.: Controllable sentence simplification with a unified text-to-text transfer transformer. In: Proceedings of the 14th International Conference on Natural Language Generation, pp. 341–352 (2021)

    Google Scholar 

  28. Siddharthan, A.: An architecture for a text simplification system (2002). https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.9968 &rank=1

  29. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: KDD 2008, pp. 990–998 (2008)

    Google Scholar 

  30. Xu, W., Callison-Burch, C., Napoles, C.: Problems in current text simplification research: new data can help. Trans. ACL 3, 283–297 (2015). https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00139

  31. Yimam, S.M., et al.: A report on the complex word identification shared task 2018. In: The 13th Workshop on Innovative Use of NLP for Building Educational Applications (NAACL2018 Workshops) (2018)

    Google Scholar 

  32. Zhang, X., Lapata, M.: Sentence simplification with deep reinforcement learning. In: EMNLP 2017: Conference on Empirical Methods in Natural Language Processing, pp. 584–594. Association for Computational Linguistics (2017)

    Google Scholar 

  33. Zhu, Z., Bernhard, D., Gurevych, I.: A monolingual tree-based translation model for sentence simplification. In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), Beijing, China, pp. 1353–1361. Coling 2010 Organizing Committee (2010). https://www.aclweb.org/anthology/C10-1152

  34. Štajner, S., Sheang, K.C., Saggion, H.: Sentence Simplification Capabilities of Transfer-Based Models (2022)

    Google Scholar 

Download references

Acknowledgment

This track would not have been possible without the great support of numerous individuals. We want thank in particular Silvia Araujo, Patrice Bellot, Julien Boccou, Pierre De Loor, Radia Hannachi, Helen McCombie, Diana Nurbakova, Irina Ovchinnikov, and Léa Talec; the students of the Université de Bretagne Occidentale; and all the 2022 track participants for their great help in discussing and shaping the track, and in creating all the evaluation data and training data for 2023. We also thank the MaDICS (https://www.madics.fr/ateliers/simpletext/) research group and the French National Research Agency (project ANR-22-CE23-0019-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Ermakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ermakova, L., SanJuan, E., Huet, S., Augereau, O., Azarbonyad, H., Kamps, J. (2023). CLEF 2023 SimpleText Track. In: Kamps, J., et al. Advances in Information Retrieval. ECIR 2023. Lecture Notes in Computer Science, vol 13982. Springer, Cham. https://doi.org/10.1007/978-3-031-28241-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28241-6_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28240-9

  • Online ISBN: 978-3-031-28241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics