Abstract
The Internet has a vast collection of information from different domains, including scientific knowledge in books, journals, and conference proceedings. When a user creates the query, these systems typically retrieve documents based on keywords that are irrelevant to the user in most cases. So, there is a need to retrieve the scientific knowledge more based on knowledge. This paper proposes a knowledge-centric scientific document recommendation framework for the recommendation of scientific documents. The recommendation is user query-centric and uses Lin Similarity for term enrichment. The preprocessing is done by Tokenization, Lemmatization, Stop Word Removal, and Named Entity Recognition (NER). Normalized Google Distance and Normalized Pointwise Mutual Information methods are used to compute semantic similarities to achieve ontology alignment. The final solution set is achieved using Flying Fox Algorithm, and the HybRDFSciRec achieves the best-in-class accuracy and high percentage of precision for a wide range of recommendations over the other baseline models, making it an efficient system for recommending scientific documents.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tian, X., Wang, J.: Retrieval of scientific documents based on HFS and BERT. IEEE Access 9, 8708–8717 (2021)
Toninelli, A., Bradshaw, J., Kagal, L., Montanari, R.: Rule-based and ontology-based policies: toward a hybrid approach to control agents in pervasive environments. In: Proceedings of the Semantic Web and Policy Workshop. November 2005
Santos, O.C., Boticario, J.G.: Requirements for semantic educational recommender systems in formal e-learning scenarios. Algorithms 4(2), 131–154 (2011)
Chung, H., Kim, J.: An ontological approach for semantic modeling of curriculum and syllabus in higher education. Int. J. Inform. Educ. Technol. 6(5), 365 (2016)
Sugathadasa, K., et al.: Legal document retrieval using document vector embeddings and deep learning. In: Science and information conference, pp. 160-175. Springer, Cham. July 2018.https://doi.org/10.1007/978-3-030-01177-2_12
Amami, M., Faiz, R., Stella, F., Pasi, G.: A graph based approach to scientific paper recommendation. In: Proceedings of the international conference on web intelligence, pp. 777–782. August 2017
Lai, C.H., Chang, Y.C.: Document recommendation based on the analysis of group trust and user weightings. J. Inf. Sci. 45(6), 845–862 (2019)
Aditya, S., Muhil Aditya, P., Deepak, G., Santhanavijayan, A.: IIMDR: intelligence integration model for document retrieval. In International Conference on Digital Technologies and Applications, pp. 707-717. Springer, Cham. January 2021.https://doi.org/10.1007/978-3-030-73882-2_64
Surya, D., Deepak, G.: USWSBS: user-centric sensor and web service search for IoT application using bagging and sunflower optimization. In International Conference on Emerging Trends and Technologies on Intelligent Systems, pp. 349-359. Springer, Singapore. March 2021.https://doi.org/10.1007/978-981-16-3097-2_29
Deepak, G., Surya, D., Trivedi, I., Kumar, A., Lingampalli, A.: An artificially intelligent approach for automatic speech processing based on triune ontology and adaptive tribonacci deep neural networks. Comput. Electr. Eng. 98, 107736 (2022)
Chhatwal, G.S., Deepak, G.: IEESWPR: an integrative entity enrichment scheme for socially aware web page recommendation. In: Data Science and Security, pp. 239–249. Springer, Singapore (2022)
Singh, S., Deepak, G.: Towards a knowledge centric semantic approach for text summarization. In: Data Science and Security, pp. 1-9. Springer, Singapore. (2021).https://doi.org/10.1007/978-981-16-4486-3_1
Deepak, G., Santhanavijayan, A.: QGMS: a query growth model for personalization and diversification of semantic search based on differential ontology semantics using artificial intelligence. Comput. Intell. (2022)
Manoj, N., Deepak, G. ODFWR: an ontology driven framework for web service recommendation. In: Data Science and Security, pp. 150-158. Springer, Singapore. (2021).https://doi.org/10.1007/978-981-16-4486-3_16
Palvannan, S., Deepak, G.: TriboOnto: a strategic domain ontology model for conceptualization of tribology as a principal domain. In: International Conference on Electrical and Electronics Engineering, pp. 215-223. Springer, Singapore (2022).https://doi.org/10.1007/978-981-19-1742-4_18
Ojha, R., Deepak, G.: SAODFT: socially aware ontology driven approach for query facet generation in text classification. In: International Conference on Electrical and Electronics Engineering, pp. 154–163. Springer, Singapore (2022)
Agrawal, D., Deepak, G.: OntoSpammer: A Two-Source Ontology-Based Spam Detection Using Bagging. In: Mekhilef, S., Shaw, R.N., Siano, P. (eds.) ICEEE 2022. LNEE, vol. 894, pp. 145–153. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-1677-9_13
Kynshi, L.D.L., Deepak, G., Santhanavijayan, A.: MagnetOnto: modelling and evaluation of standardised domain ontologies for magnetic materials as a prospective domain. Int. J. Intell. Enterp. 8(4), 459–475 (2021)
Mohnish, S., Deepak, G., Praveen, S. V., Sheeba Priyadarshini, J.: DKMI: diversification of web image search using knowledge centric machine intelligence. In Iberoamerican Knowledge Graphs and Semantic Web Conference, pp. 163-177. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21422-6_12
Vishal, K., Deepak, G., Santhanavijayan, A.: An approach for retrieval of text documents by hybridizing structural topic modeling and pointwise mutual information. In: Innovations in Electrical and Electronic Engineering, pp. 969-977. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0749-3_74
Umaa Mageswari, S., Mala, C., Santhanavijayan, A., Deepak, G.: A non-collaborative approach for modeling ontologies for a generic IoT lab architecture. J. Inf. Optim. Sci. 41(2), 395–402 (2020)
Kumar, N., Deepak, G., Santhanavijayan, A.: A novel semantic approach for intelligent response generation using emotion detection incorporating NPMI measure. Procedia Comput. Sci. 167, 571–579 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Singh, D., Deepak, G. (2023). HybRDFSciRec: Hybridized Scientific Document Recommendation Framework. In: Abraham, A., Bajaj, A., Gandhi, N., Madureira, A.M., Kahraman, C. (eds) Innovations in Bio-Inspired Computing and Applications. IBICA 2022. Lecture Notes in Networks and Systems, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-031-27499-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-27499-2_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27498-5
Online ISBN: 978-3-031-27499-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)