Nothing Special   »   [go: up one dir, main page]

Skip to main content

Study and Implementation of Biped Robot Soccer Based on Machine Vision

  • Conference paper
  • First Online:
Advances in Intelligent Systems, Computer Science and Digital Economics IV (CSDEIS 2022)

Absrtact

The function realization of biped robot involves many problems, such as hardware development and software algorithm. The application of machine vision technology can better improve the stability and rapidity of the robot to complete the kicking soccer action. This paper focuses on the problem of how to effectively use machine vision to recognize small balls and coordinate the robot's legs to complete the soccer kicking action. Firstly, the target of the small ball is recognized based on the YOLOv4 algorithm, and the coordinate position of the small ball is given, and then converted into the motion control parameters of the robot's legs, so as to guide the biped robot to complete the football kicking. Finally, this paper tests and verifies the proposed scheme, proves the feasibility of this scheme, and provides some help for the follow-up research in the field of visual biped robot soccer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guenter, S.M.: The american robot: a cultural history. J. Am. History 108(2), 355–356 (2021)

    Article  Google Scholar 

  2. Li, X., Yi, D.: The technological innovation of American industrial robot in the start-up period. Sci. Technol. Indus. 17(10), 138–143 (2017)

    Google Scholar 

  3. Chestnutt J., Lau M., Cheung G., et al.: Footstep planning for the Honda ASIMO humanoid. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005. IEEE (2005)

    Google Scholar 

  4. Sakagami, Y., Watanabe, R., Aoyama, C., et al.: The intelligent ASIMO: system overview and integration. In: IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE (2002)

    Google Scholar 

  5. Favot, V., Buschmann, T., Schwienbacher, M., et al.: The sensor-controller network of the humanoid robot LOLA. In: IEEE-RAS International Conference on Humanoid Robots. IEEE (2012)

    Google Scholar 

  6. Polishchuk, M., Opashnianskyi, M., Suyazov, N.: Walking mobile robot of arbitrary orientation. Int. J. Eng. Manuf. 8(3), 1–11 (2018). https://doi.org/10.5815/ijem.2018.03.01

    Article  Google Scholar 

  7. Shi, L., Wang, Q., Wu, L.: Research on humanoid robot soccer system based on fuzzy logic. Int. J. Comput. Netw. Inf. Secur. 2(1), 38–44 (2010). https://doi.org/10.5815/ijcnis.2010.01.06

    Article  Google Scholar 

  8. Marie, M.J., Mahdi, S.S., Tarkan, E.Y.: Intelligent control for a swarm of two-wheel mobile robot with presence of external disturbance. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 11(11), 7–12 (2019)

    Article  Google Scholar 

  9. Tiwari, A.K., Nadimpalli, S.V.: New fusion algorithm provides an alternative approach to robotic path planning. Int. J. Inf. Eng. Electron. Bus. 12(3), 1–7 (2020). https://doi.org/10.5815/ijieeb.2020.03.01

    Article  Google Scholar 

  10. Sun, Y., Luo, A.: Development research on China’s industrial robot. Sci. Technol. Eng. 12, 2912–2918 (2012)

    Google Scholar 

  11. Radhika Mani, M., Varma, G.P.S., Potukuchi, D.M., Satyanarayana, Ch.: Design of a novel shape signature by farthest point angle for object recognition. Int. J. Image Graph. Signal Process. 7(1), 35–46 (2014). https://doi.org/10.5815/ijigsp.2015.01.05

    Article  Google Scholar 

  12. Singh, S., Saurav, S., Shekhar, C., Vohra, A.: Moving object detection scheme for automated video surveillance systems. Int. J. Image Graph. Signal Process. 8(7), 49–58 (2016). https://doi.org/10.5815/ijigsp.2016.07.06

    Article  Google Scholar 

  13. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Computer Vision & Pattern Recognition. IEEE (2016)

    Google Scholar 

  14. Su, S., Delbracio, M., Wang, J., et al.: Deep video deblurring for hand-held cameras. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  15. Tiwari, A.K., Nadimpalli, S.V.: Learning semantic image attributes using image recognition and knowledge graph embeddings. Int. J. Image Graph. Signal Process. 12(5), 44–52 (2020). https://doi.org/10.5815/ijigsp.2020.05.05

    Article  Google Scholar 

  16. Diwakar, D.R.: Recent object detection techniques: a survey. Int. J. Image Graph. Signal Process. (IJIGSP) 14(2), 47–60 (2022)

    Article  Google Scholar 

  17. Zhang, G., Zeng, Z., Zhang, S., et al.: SIFT matching with CNN evidences for particular object retrieval. Neuro Comput. 238(238), 399–409 (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  19. Cai, F., Chen, H., Ma, J.: Man-made object detection based on texture clustering and geometric structure feature extracting. Int. J. Inf. Technol. Comput. Sci. 3(2), 9–16 (2011). https://doi.org/10.5815/ijitcs.2011.02.02

    Article  Google Scholar 

Download references

Acknowledgment

This project is supported by Scientific Research Basic Ability Improvement Project for Young and Middle-Aged Teachers of Guangxi Universities(2022KY1781).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhe Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Lv, J., Lu, H. (2023). Study and Implementation of Biped Robot Soccer Based on Machine Vision. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-031-24475-9_48

Download citation

Publish with us

Policies and ethics