Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recovering the Tight Security Proof of SPHINCS\(^+\)

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13794))

Abstract

In 2020, Kudinov, Kiktenko, and Fedorov pointed out a flaw in the tight security proof of the SPHINCS\(^+\) construction. This work gives a new tight security proof for SPHINCS\(^+\). The flaw can be traced back to the security proof for the Winternitz one-time signature scheme (WOTS) used within SPHINCS\(^+\). In this work, we give a stand-alone description of the WOTS variant used in SPHINCS\(^+\) that we call WOTS-TW. We provide a security proof for WOTS-TW and multi-instance WOTS-TW against non-adaptive chosen message attacks where the adversary only learns the public key after it made its signature query. Afterwards, we show that this is sufficient to give a tight security proof for SPHINCS\(^+\). We recover almost the same bound for the security of SPHINCS\(^+\), with only a factor w loss compared to the previously claimed bound, where w is the Winternitz parameter that is commonly set to 16. On a more technical level, we introduce new lower bounds on the quantum query complexity for generic attacks against properties of cryptographic hash functions and analyse the constructions of tweakable hash functions used in SPHINCS\(^+\) with regard to further security properties.

This work was funded by an NWO VIDI grant (Project No. VI.Vidi.193.066). Part of this work was done while M.K. was still affiliated with the Russian Quantum Center, QApp. Date: November 19, 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To be precise, we are considering multi-target versions of these notions which we omit in the introduction for the sake of clarity.

References

  1. Aumasson, J.-P., et al.: SPHINCS\(^{+}\). Submission to NIST’s post-quantum crypto standardization project, v. 3 (2020). http://sphincs.org/data/sphincs+-round3-specification.pdf

  2. Bernstein, D.J., Hülsing, A.: Decisional second-preimage resistance: when does SPR imply PRE? In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 33–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_2

    Chapter  Google Scholar 

  3. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe, P.: The SPHINCS\(^+\) signature framework. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2129–2146. ACM Press (2019)

    Google Scholar 

  4. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_8

    Chapter  Google Scholar 

  5. Hülsing, A., Kudinov, M.: Recovering the tight security proof of SPHINCS\(^{+}\). Cryptology ePrint Archive, Paper 2022/346 (2022). http://eprint.iacr.org/2022/346

  6. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_15

    Chapter  Google Scholar 

  7. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_10

    Chapter  Google Scholar 

  8. Kudinov, M., Kiktenko, E., Fedorov, A.: [PQC-forum] Round 3 Official Comment: SPHINCS+ (2020). http://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/official-comments/Sphincs-Plus-round3-official-comment.pdf. Accessed 1 Feb 2022

  9. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  10. Xagawa, K., Yamakawa, T.: (Tightly) QCCA-secure key-encapsulation mechanism in the quantum random oracle model. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 249–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_14

    Chapter  MATH  Google Scholar 

  11. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hülsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hülsing, A., Kudinov, M. (2022). Recovering the Tight Security Proof of SPHINCS\(^+\). In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13794. Springer, Cham. https://doi.org/10.1007/978-3-031-22972-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22972-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22971-8

  • Online ISBN: 978-3-031-22972-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics