Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Decision Making Applications via Distance Measures

  • Chapter
  • First Online:
Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1061))

  • 272 Accesses

Abstract

Intuitionistic fuzzy sets are an area that has attracted the attention of many researchers recently and is used in many application areas. Researchers have made use of intuitionistic fuzzy sets because of their usefulness in all applications involving decision making. In decision making problems including criteria and alternatives, intuitive fuzzy sets are evaluated with distance measures defined, and more sensitive results are obtained in application areas than many methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  2. K.T. Atanassov, Intuitionistic fuzzy sets, VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian), Reprinted: Int. J. Bioautomation 20(S1) (2016)

    Google Scholar 

  3. K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  4. G. Çuvalcıoğlu, S. Yılmaz, Some properties of OTMOs on IFSs. Adv. Stud. Contemp. Math. 20(4), 621–628 (2010)

    MATH  Google Scholar 

  5. G. Çuvalcıoğlu, E. Aykut, An application of the intuitionistic fuzzy modal operator Eα,β. NIFS 20(5), 57–61 (2014)

    Google Scholar 

  6. G. Çuvalcıoğlu, S. Yılmaz, K.T. Atanassov, Matrix representation of the second type of intuitionistic fuzzy modal operators. Notes on Intuitionistic Fuzzy Sets 20(5), 9–16 (2014)

    MATH  Google Scholar 

  7. G. Çuvalcıoğlu, S. Yılmaz, Some properties of intuitionistic fuzzy equivalence relations and class trees w.r.t. intuitionistic fuzzy equivalence relations. Adv. Stud. Contemp. Math. 24(1), 77–86 (2014)

    Google Scholar 

  8. G. Çuvalcıoğlu, E. Aykut, An application of some intuitionistic fuzzy modal operators to agriculture. Notes on Intuitionistic Fuzzy Sets 21(2), 140–149 (2015)

    Google Scholar 

  9. G. Çuvalcıoğlu, S. Tarsuslu (Ylmaz), Universal algebra in intuitionistic fuzzy set theory. Notes on Intuitionistic Fuzzy Sets 23(1), 1–5 (2017)

    Google Scholar 

  10. P.A. Ejegwa, A.J. Akubo, O.M. Joshua, Intuitionistic fuzzy sets in career determination. Glob. J. Sci. Front. Res.: F Math. Decis. Sci. 14(3) (2014)

    Google Scholar 

  11. S. Melliani, O. Castillo, in Recent Advances in Intuitionistic Fuzzy Logic Systems: Theoretical Aspects and Applications. Studies in Fuzziness and Soft Computing (Springer, 2019)

    Google Scholar 

  12. S. Melliani, O. Castillo, in Recent Advances in Intuitionistic Fuzzy Logic Systems and Mathematics. Studies in Fuzziness and Soft Computing (Springer, 2021)

    Google Scholar 

  13. E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications. Notes on IFS 7(4), 58–64 (2001)

    MATH  Google Scholar 

  14. E. Szmidt, J. Kacprzyk, Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets. Notes on IFS 10(4), 61–69 (2004)

    MATH  Google Scholar 

  15. F. Kutlu, Ö. Atan, T. Bilgin, Comparative Analysis of Performances of Fuzzy and Intuitionistic Fuzzy Similarity Measures on Noise Added Images, in Conference: FUZZYSS (2015)

    Google Scholar 

  16. E. Szmidt, in Distances and Similarities in Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing (Springer, 2014)

    Google Scholar 

  17. F. Tuğrul, B. Yılmaz, M. Çitil, School success ranking in multi criteria decision making. Turk. J. Math. Comput. Sci. 10, 1–6 (2018). MATDER

    Google Scholar 

  18. F. Tuğrul, B. Yılmaz, M. Çitil, Application of ranking with similarity measure in multi criteria decision making. Konuralp J. Math. 7(2), 438–441 (2019)

    Google Scholar 

  19. W. Wang, X. Xin, Distance measure between intuitionistic fuzzy sets. Pattern Recogn. Lett. 26, 2063–2069 (Elsevier, 2005)

    Google Scholar 

  20. Z.S. Xu, J. Chen, An Overview of Distance and Similarity Measures of Intuitionistic Fuzzy Sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 16(4), 529–555 (2008)

    Article  MATH  Google Scholar 

  21. G. Çuvalcıoğlu, V. Bureva, A. Michalikova, Intercriteria analysis applied to university ranking system of Turkey. Notes on Intuitionistic Fuzzy Sets 25(4), 90–97 (2019)

    Article  Google Scholar 

  22. R. Parvathi, V. Atanassova, L. Doukovska, C. Yuvapriya, K. Indhurekha, Intercriteria analysis of rankings of Indian Universities. Notes on Intuitionistic Fuzzy Sets. 24(1), 99–109 (2018)

    Article  Google Scholar 

  23. F. Tuğrul, M. Çitil, B. Karasolak, M. Dağlı, Interpretation of physical conditions of schools with fuzzy multi criteria decision making. J. Univ. Math. 3(1), 46–52 (2020)

    Article  Google Scholar 

  24. E. Szmidt, J. Kacprzyk, On measuring distances between intuitionistic fuzzy sets. Notes on IFS 3(4), 1–3 (1997)

    Google Scholar 

  25. E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114(3), 505–518 (2000)

    Article  MATH  Google Scholar 

  26. S. Chen, J. Tan, Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 67, 163–172 (1994)

    Article  MATH  Google Scholar 

  27. M. Çitil, Application of the intuitionistic fuzzy in education. Commun. Math. Appl. 10(1), 131–143 (2019)

    Google Scholar 

  28. M. Çitil, F. Tuğrul, B. Yılmaz, An application of multi criteria decision making: ranking of school success. Celal Bayar Univ. J. Sci. 15(1), 45–50 (2019)

    Google Scholar 

  29. E. Szmidt, J. Kacprzyk, An application of intuitionistic fuzzy set similarity measures to a multi-criteria decision making problem (Springer, Heidelberg, 2006), pp. 314-323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feride Tuğrul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuğrul, F., Çitil, M. (2023). On Decision Making Applications via Distance Measures. In: Castillo, O., Melin, P. (eds) Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design. Studies in Computational Intelligence, vol 1061. Springer, Cham. https://doi.org/10.1007/978-3-031-22042-5_1

Download citation

Publish with us

Policies and ethics