Nothing Special   »   [go: up one dir, main page]

Skip to main content

Load Feedback from a Dynamically Scaled Robotic Model of Carausius Morosus Middle Leg

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13548))

Included in the following conference series:

Abstract

Load sensing is critical for walking behavior in animals, who have evolved a number of sensory organs and neural systems to improve their agility. In particular, insects measure load on their legs using campaniform sensilla (CS), sensory neurons in the cuticle of high-stress portions of the leg. Extracellular recordings from these sensors in a behaving animal are difficult to collect due to interference from muscle potentials, and some CS groups are largely inaccessible due to their placement on the leg. To better understand what loads the insect leg experiences and what sensory feedback the nervous system may receive during walking, we constructed a dynamically-scaled robotic model of the leg of the stick insect Carausius morosus. We affixed strain gauges in the same positions and orientations as the major CS groups on the leg, i.e., 3, 4, 6A, and 6B. The robotic leg was mounted to a vertically-sliding linear guide and stepped on a treadmill to simulate walking. Data from the strain gauges was run through a dynamic model of CS discharge developed in a previous study. Our experiments reveal stereotypical loading patterns experienced by the leg, even as its weight and joint stiffness is altered. Furthermore, our simulated CS strongly signal the beginning and end of stance phase, two key events in the coordination of walking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Struct. Dev. 33, 273–286 (2004). https://doi.org/10.1016/j.asd.2004.05.005

    Article  Google Scholar 

  2. Delcomyn, F., Nelson, M.E., Cocatre-Zilgien, J.H.: Sense organs of insect legs and the selection of sensors for agile walking robots. Int. J. Rob. Res. 15, 113–127 (1996). https://doi.org/10.1177/027836499601500201

    Article  Google Scholar 

  3. Mohren, T.L., Daniel, T.L., Eberle, A.L., Reinhall, P.G., Fox, J.L.: Coriolis and centrifugal forces drive haltere deformations and influence spike timing. J. R. Soc. Interface 16(153), 20190035 (2019). https://doi.org/10.1098/rsif.2019.0035

    Article  Google Scholar 

  4. Duysens, J., Clarac, F., Cruse, H.: Load-regulating mechanisms in gait and posture: comparative aspects. Physiol. Rev. 80, 83–133 (2000)

    Article  Google Scholar 

  5. Zill, S.N., Dallmann, C.J., Szczecinski, N., Büschges, A., Schmitz, J.: Evaluation of force feedback in walking using joint torques as “naturalistic” stimuli. J. Neurophysiol. 126, 227–248 (2021). https://doi.org/10.1152/jn.00120.2021

    Article  Google Scholar 

  6. Keller, B.R., Duke, E.R., Amer, A.S., Zill, S.N.: Tuning posture to body load: Decreases in load produce discrete sensory signals in the legs of freely standing cockroaches. J. Comp. Physiol. A. 193(8), 881–891 (2007). https://doi.org/10.1007/s00359-007-0241-y

    Article  Google Scholar 

  7. Ridgel, A., Frazier, F., Zill, S.: Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches. J. Comp. Physiol. A 187(5), 405–420 (2001). https://doi.org/10.1007/s003590100213

    Article  Google Scholar 

  8. Szczecinski, N.S., Dallmann, C.J., Quinn, R.D., Zill, S.N.: A computational model of insect campaniform sensilla predicts encoding of forces during walking. Bioinspir. Biomim. 16, 065001 (2021). https://doi.org/10.1088/1748-3190/ac1ced

    Article  Google Scholar 

  9. Manoonpong, P., et al.: Insect-inspired robots: bridging biological and artificial systems. Sensors 21(22), 7609 (2021). https://doi.org/10.3390/s21227609

    Article  Google Scholar 

  10. von Twickel, A., Hild, M., Siedel, T., Patel, V., Pasemann, F.: Neural control of a modular multi-legged walking machine: Simulation and hardware. Robot. Auton. Syst. 60(2), 227–241 (2012). https://doi.org/10.1016/j.robot.2011.10.006

    Article  Google Scholar 

  11. Sim, O., Jung, T., Lee, K.K., Oh, J., Oh, J.-H.: Position/torque hybrid control of a rigid, high-gear ratio quadruped robot. Adv. Robot. 32(18), 969–983 (2018). https://doi.org/10.1080/01691864.2018.1516162

    Article  Google Scholar 

  12. Goldsmith, C.A., Szczecinski, N.S., Quinn, R.D.: Neurodynamic modeling of the fruit fly Drosophila melanogaster. Bioinspir. Biomim. 15(6), 065003 (2020). https://doi.org/10.1088/1748-3190/ab9e52

    Article  Google Scholar 

  13. Cruse, H., Bartling, C.: Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41, 761–771 (1995). https://doi.org/10.1016/0022-1910(95)00032-P

    Article  Google Scholar 

  14. Theunissen, L.M., Bekemeier, H.H., Dürr, V.: Comparative whole-body kinematics of closely related insect species with different body morphology. J. Exp. Biol. 218, 340–352 (2015). https://doi.org/10.1242/jeb.114173

    Article  Google Scholar 

  15. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control, 1st edn. Cambridge University Press, USA (2017)

    Google Scholar 

  16. Hooper, S.L., et al.: Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J. Neurosci. 29(13), 4109–4119 (2009). https://doi.org/10.1523/JNEUROSCI.5510-08.2009

    Article  Google Scholar 

  17. Noah, J.A., Quimby, L., Frazier, S.F., Zill, S.N.: Sensing the effect of body load in legs: Responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. J. Comp. Physiol. A 190(3), 201–215 (2004). https://doi.org/10.1007/s00359-003-0487-y

    Article  Google Scholar 

  18. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci. 13, 15–21 (1990). https://doi.org/10.1016/0166-2236(90)90057-H

    Article  Google Scholar 

  19. Dallmann, C.J., Hoinville, T., Du, V., Schmitz, J.: A load-based mechanism for inter-leg coordination in insects. 284 (2017). https://doi.org/10.1098/rspb.2017.1755

  20. Zill, S., Büschges, A., Schmitz, J.: Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J. Comp. Physiol. A 197, 851–867 (2011)

    Article  Google Scholar 

  21. Zill, S., Schmitz, J., Chaudhry, S., Büschges, A.: Force encoding in stick insect legs delineates a reference frame for motor control. J. Neurophysiol. 108, 1453–1472 (2012)

    Article  Google Scholar 

  22. Zill, S., Chaudhry, S., Büschges, A., Schmitz, J.: Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, including receptors with round cuticular caps. Arthr. Struct. Dev. 42, 455–467 (2013)

    Article  Google Scholar 

  23. Dallmann, C.J., Karashchuk, P., Brunton, B.W., Tuthill, J.C.: A leg to stand on: computational models of proprioception. Curr. Opin. Physiol. 22, 100426 (2021). https://doi.org/10.1016/j.cophys.2021.03.001

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF IIS 2113028 as part of the Collaborative Research in Computational Neuroscience Program. A special thanks to Clarissa Goldsmith for providing the necessary experimental data on the MX-28 dynamixel servomotors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William P. Zyhowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zyhowski, W.P., Zill, S.N., Szczecinski, N.S. (2022). Load Feedback from a Dynamically Scaled Robotic Model of Carausius Morosus Middle Leg. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20470-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20469-2

  • Online ISBN: 978-3-031-20470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics