Abstract
Detecting tiny objects is one of the main obstacles hindering the development of object detection. The performance of generic object detectors tends to drastically deteriorate on tiny object detection tasks. In this paper, we point out that either box prior in the anchor-based detector or point prior in the anchor-free detector is sub-optimal for tiny objects. Our key observation is that the current anchor-based or anchor-free label assignment paradigms will incur many outlier tiny-sized ground truth samples, leading to detectors imposing less focus on the tiny objects. To this end, we propose a Gaussian Receptive Field based Label Assignment (RFLA) strategy for tiny object detection. Specifically, RFLA first utilizes the prior information that the feature receptive field follows Gaussian distribution. Then, instead of assigning samples with IoU or center sampling strategy, a new Receptive Field Distance (RFD) is proposed to directly measure the similarity between the Gaussian receptive field and ground truth. Considering that the IoU-threshold based and center sampling strategy are skewed to large objects, we further design a Hierarchical Label Assignment (HLA) module based on RFD to achieve balanced learning for tiny objects. Extensive experiments on four datasets demonstrate the effectiveness of the proposed methods. Especially, our approach outperforms the state-of-the-art competitors with 4.0 AP points on the AI-TOD dataset. Codes are available at https://github.com/Chasel-Tsui/mmdet-rfla.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: SOD-MTGAN: small object detection via multi-task generative adversarial network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 210–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_13
Bashir, S.M.A., Wang, Y.: Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network. Remote Sens. 13(9), 1854 (2021)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. CoRR arXiv:2004.10934 (2020)
Cai, Z., Vas., N.: Cascade R-CNN: delving into high quality object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, K., Wang, J., Pang, J., et al.: MMDetection: Open MMLab detection toolbox and benchmark. CoRR arXiv:1906.07155 (2019)
Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 13039–13048 (2021)
Courtrai, L., Pham, M.T., Lefèvre, S.: Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks. Remote Sens. 12(19), 3152 (2020)
Ding, J., et al.: Object detection in aerial images: a large-scale benchmark and challenges. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7778–7796 (2021)
Du, D., Zhu, P., Wen, L., et al.: VisDrone-DET2019: the vision meets drone object detection in image challenge results. In: IEEE International Conference on Computer Vision Workshops, pp. 213–226 (2019)
Duchi, J.: Derivations for linear algebra and optimization 3(1), 2325–5870. Berkeley, California (2007)
Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theor. 49(7), 1858–1860 (2003)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)
Ge, Z., Liu, S., Li, Z., Yoshie, O., Sun, J.: OTA: optimal transport assignment for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kim, K., Lee, H.S.: Probabilistic anchor assignment with IoU prediction for object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 355–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_22
Kim, Y., Kang, B.-N., Kim, D.: SAN: learning relationship between convolutional features for multi-scale object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 328–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_20
Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv preprint arXiv:1902.07296 (2019)
Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: Foveabox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45
Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S.: Perceptual generative adversarial networks for small object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1222–1230 (2017)
Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: IEEE International Conference on Computer Vision, pp. 6054–6063 (2019)
Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid R-CNN. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7363–7372 (2019)
Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems 29 (2016)
Ma, Y., Liu, S., Li, Z., Sun, J.: IQDet: instance-wise quality distribution sampling for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1717–1725 (2021)
Nielsen, F.: On the jensen-shannon symmetrization of distances relying on abstract means. Entropy 21(5), 485 (2019). https://doi.org/10.3390/e21050485
Noh, J., Bae, W., Lee, W., Seo, J., Kim, G.: Better to follow, follow to be better: towards precise supervision of feature super-resolution for small object detection. In: IEEE International Conference on Computer Vision, pp. 9725–9734 (2019)
Paszke, A., Gross, S., Massa, F., Lerer, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)
Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019)
Qiao, S., Chen, L.C., Yuille, A.: DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Rabbi, J., Ray, N., Schubert, M., Chowdhury, S., Chao, D.: Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network. Remote Sens. 12(9), 1432 (2020)
Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)
Bernstein, M., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Singh, B., Davis, L.S.: An analysis of scale invariance in object detection snip. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587 (2018)
Singh, B., Najibi, M., Davis, L.S.: Sniper: efficient multi-scale training. In: Advances in Neural Information Processing Systems, pp. 9310–9320 (2018)
Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: IEEE International Conference on Computer Vision, pp. 9627–9636 (2019)
Vu, T., Jang, H., Pham, T.X., Yoo, C.: Cascade RPN: delving into high-quality region proposal network with adaptive convolution 32, 1432–1442 (2019)
Wang, J., Xu, C., Yang, W., Yu, L.: A normalized Gaussian wasserstein distance for tiny object detection. arXiv preprint arXiv:2110.13389 (2021)
Wang, J., Yang, W., Guo, H., Zhang, R., Xia, G.S.: Tiny object detection in aerial images. In: International Conference on Pattern Recognition, pp. 3791–3798 (2021)
Wang, J., Yang, W., Li, H.C., Zhang, H., Xia, G.S.: Learning center probability map for detecting objects in aerial images. IEEE Trans. Geosci. Remote Sens. 59(5), 4307–4323 (2021)
Xu, C., Wang, J., Yang, W., Yu, H., Yu, L., Xia, G.S.: Detecting tiny objects in aerial images: a normalized wasserstein distance and a new benchmark. ISPRS J. Photogramm. Remote. Sens. 190, 79–93 (2022)
Xu, C., Wang, J., Yang, W., Yu, L.: Dot distance for tiny object detection in aerial images. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1192–1201 (2021)
Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q.: Rethinking rotated object detection with Gaussian wasserstein distance loss. In: International Conference on Machine Learning, vol. 139, pp. 11830–11841 (2021)
Yang, X., Yang, X., Yang, J., Ming, Q., Wang, W., Tian, Q., Yan, J.: Learning high-precision bounding box for rotated object detection via Kullback-Leibler divergence. In: Advances in Neural Information Processing Systems 34 (2021)
Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. In: IEEE International Conference on Computer Vision, pp. 9657–9666 (2019)
Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: UnitBox: an advanced object detection network, pp. 516–520 (2016)
Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z.: Scale match for tiny person detection. In: IEEE Workshops on Applications of Computer Vision, pp. 1257–1265 (2020)
Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: S3FD: single shot scale-invariant face detector. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 192–201 (2017)
Zhang, X., Wan, F., Liu, C., Ji, X., Ye, Q.: Learning to match anchors for visual object detection. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3096–3109 (2021)
Zhao, Q., et al.: M2Det: a single-shot object detector based on multi-level feature pyramid network. In: AAAI Conference on Artificial Intelligence, pp. 9259–9266 (2019)
Zhu, B., et al.: AutoAssign: differentiable label assignment for dense object detection. arXiv preprint arXiv:2007.03496 (2020)
Zhu, P., et al.: VisDrone-DET2018: the vision meets drone object detection in image challenge results. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 437–468. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_27
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2021)
Acknowledgement
This work was partly supported by the Fundamental Research Funds for the Central Universities under Grant 2042022kf1010, and the National Natural Science Foundation of China under Grant 61771351 and 61871297. The numerical calculations were conducted on the supercomputing system in the Supercomputing Center, Wuhan University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, C., Wang, J., Yang, W., Yu, H., Yu, L., Xia, GS. (2022). RFLA: Gaussian Receptive Field Based Label Assignment for Tiny Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-20077-9_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20076-2
Online ISBN: 978-3-031-20077-9
eBook Packages: Computer ScienceComputer Science (R0)