Abstract
Software development for robotics applications is still a major challenge that becomes even more complex when considering a Multi-Robot System (MRS). Such a distributed software has to perform multiple cooperating tasks in a well-coordinated manner to avoid unsatisfactory emerging behavior. This paper provides an approach for programming MRSs at a high abstraction level using the programming language X-Klaim. The computation and communication model of X-Klaim, based on multiple distributed tuple spaces, permits to coordinate with the same abstractions and mechanisms both intra- and inter-robot interactions of an MRS. This allows developers to focus on MRS behavior, achieving readable and maintainable code. The proposed approach can be used in practice through the integration of X-Klaim and the popular robotics framework ROS. We show the proposal’s feasibility and effectiveness by implementing an MRS scenario.
This work was partially supported by the PRIN projects “SEDUCE” n. 2017TWRCNB and “T-LADIES” n. 2020TL3X8X, and the INdAM - GNCS Project “Proprietà qualitative e quantitative di sistemi reversibili” n. CUP_E55F2200027001.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Jetty 9: https://www.eclipse.org/jetty/.
- 5.
- 6.
The complete source code of the scenario implementation, and a screencast showing its execution on Gazebo, can be found at https://github.com/LorenzoBettini/xklaim-ros-multi-robot-warehouse-example.
References
Adam, S., Larsen, M., Jensen, K., Schultz, U.P.: Rule-based dynamic safety monitoring for mobile robots. J. Softw. Eng. Rob. 7(1), 121–141 (2016)
Adam, S., Schultz, U.P.: Towards interactive, incremental programming of ROS nodes. In: Workshop on Domain-Specific Languages and models for Robotic systems (2014)
Alonso, D., et al.: V\(^3\)CMM: a 3-view component meta-model for model-driven robotic software development. J. Softw. Eng. Rob. 1, 3–17 (2010)
Bettini, L., De Nicola, R., Pugliese, R.: Klava: a Java package for distributed and mobile applications. Softw. Pract. Exp. 32(14), 1365–1394 (2002)
Bettini, L., Bourr, K., Pugliese, R., Tiezzi, F.: Writing robotics applications with X-Klaim. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 361–379. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_22
Bettini, L., Loreti, M., Pugliese, R.: An infrastructure language for open nets. In: SAC, pp. 373–377. ACM (2002)
Bettini, L., Merelli, E., Tiezzi, F.: X-Klaim is back. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 115–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_8
Brugali, D., Gherardi, L.: HyperFlex: a model driven toolchain for designing and configuring software control systems for autonomous robots. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 509–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_20
Bruyninckx, H., et al.: The BRICS component model: a model-based development paradigm for complex robotics software systems. In: SAC, pp. 1758–1764. ACM (2013)
Bubeck, A., et al.: BRIDE - a toolchain for framework-independent development of industrial service robot applications. In: ISR, pp. 137–142. VDE (2014)
Casalaro, G.L.: Model-driven engineering for mobile robotic systems: a systematic mapping study. Softw. Syst. Model. (2021). https://doi.org/10.1007/s10270-021-00908-8
Ciccozzi, F., et al.: Adopting MDE for specifying and executing civilian missions of mobile multi-robot systems. IEEE Access 4, 6451–6466 (2016)
de Araújo Silva, E., Valentin, E., Carvalho, J.R.H., da Silva Barreto, R.: A survey of model driven engineering in robotics. Comput. Lang. 62, 101021 (2021)
De Nicola, R., Di Stefano, L., Inverso, O.: Toward formal models and languages for verifiable multi-robot systems. Front. Rob. AI 5, 94 (2018)
De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents interaction and mobility. IEEE Trans. Softw. Eng. 24(5), 315–330 (1998)
De Nicola, R., Ferrari, G.L., Pugliese, R., Venneri, B.: Types for access control. Theor. Comput. Sci. 240(1), 215–254 (2000)
De Nicola, R., Gorla, D., Pugliese, R.: Confining data and processes in global computing applications. Sci. Comput. Program. 63(1), 57–87 (2006)
De Nicola, R., Gorla, D., Pugliese, R.: Basic observables for a calculus for global computing. Inf. Comput. 205(10), 1491–1525 (2007)
De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)
De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Trans. Comput. Log. 5(1), 79–128 (2004)
De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2), 1–29 (2014)
De Nicola, R., et al.: From flow logic to static type systems for coordination languages. Sci. Comput. Program. 75(6), 376–397 (2010)
Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: Drona: a framework for safe distributed mobile robotics. In: 8th Internnational Conference on Cyber-Physical Systems, pp. 239–248 (2017)
Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-specific language to design, simulate and deploy robotic applications. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 149–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34327-8_16
Doriya, R., Mishra, S., Gupta, S.: A brief survey and analysis of multi-robot communication and coordination. In: International Conference on Computing, Communication, Automation, pp. 1014–1021 (2015)
Dragule, S., Meyers, B., Pelliccione, P.: A generated property specification language for resilient multirobot missions. In: Romanovsky, A., Troubitsyna, E.A. (eds.) SERENE 2017. LNCS, vol. 10479, pp. 45–61. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65948-0_4
Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Semantics, distributed implementation, and formal analysis of KLAIM models in Maude. Sci. Comput. Program. 99, 24–74 (2015)
Estévez, E., et al.: ART2ool: a model-driven framework to generate target code for robot handling tasks. Adv. Manuf. Technol. 97(1–4), 1195–1207 (2018)
Farinelli, A., Iocchi, L., Nardi, D.: Multirobot systems: a classification focused on coordination. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(5), 2015–2028 (2004)
Figat, M., Zieliński, C.: Robotic system specification methodology based on hierarchical Petri nets. IEEE Access 8, 71617–71627 (2020)
Frigerio, M., Buchli, J., Caldwell, D.G.: A domain specific language for kinematic models and fast implementations of robot dynamics algorithms. In: Proceedings of DSLRob 2011. CoRR, vol. abs/1301.7190 (2013)
García, S., et al.: High-level mission specification for multiple robots. In: 12th ACM SIGPLAN International Conference on Software Language Engineering, p. 127–140 (2019)
Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985)
Ghosh, R., et al.: Koord: a language for programming and verifying distributed robotics application. Proc. ACM Program. Lang. 4(OOPSLA), 1–30 (2020)
Gjondrekaj, E., Loreti, M., Pugliese, R., Tiezzi, F.: Modeling adaptation with a tuple-based coordination language. In: SAC 2012, pp. 1522–1527. ACM (2012)
Gjondrekaj, E., et al.: Towards a formal verification methodology for collective robotic systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 54–70. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34281-3_7
Gorla, D., Pugliese, R.: Enforcing security policies via types. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 86–100. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39881-3_10
Gorla, D., Pugliese, R.: Resource access and mobility control with dynamic privileges acquisition. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 119–132. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_11
Harbin, J., et al.: Model-driven simulation-based analysis for multi-robot systems. In: 24th International Conference on Model Driven Engineering Languages and Systems (MODELS) (2021)
Hu, C., Dong, W., Yang, Y., Shi, H., Zhou, G.: Runtime verification on hierarchical properties of ROS-based robot swarms. IEEE Trans. Reliabil. 69(2), 674–689 (2019)
Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.: ROSRV: runtime verification for robots. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 247–254. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_20
Koenig, N.P., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: IROS, pp. 2149–2154. IEEE (2004)
Kumar, P., et al.: Rosmod: a toolsuite for modeling, generating, deploying, and managing distributed real-time component-based software using ros. In: International Symposium on Rapid System Prototyping (RSP) (2015)
Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: an open-source model checker for the verification of multi-agent systems. Softw. Tools Technol. Transfer 19(1), 9–30 (2017)
Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification and verification of autonomous robotic systems. ACM Comput. Surv. 52, 1–41 (2020)
Majumdar, R., Yoshida, N., Zufferey, D.: Multiparty motion coordination: from choreographies to robotics programs. Proc. ACM Program. Lang. 4(OOPSLA), 134:1–134:30 (2020)
Meng, W., Park, J., Sokolsky, O., Weirich, S., Lee, I.: Verified ROS-based deployment of platform-independent control systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 248–262. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_18
Miyazawa, A., et al.: RoboChart: modelling and verification of the functional behaviour of robotic applications. Softw. Syst. Model. 18(5), 3097–3149 (2019)
Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A survey on domain-specific modeling and languages in robotics. Softw. Eng. Rob. 7, 75–99 (2016)
Nordmann, A., Hochgeschwender, N., Wrede, S.: A survey on domain-specific languages in robotics. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 195–206. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7_17
Pinciroli, C., Lee-Brown, A., Beltrame, G.: A tuple space for data sharing in robot swarms. EAI Endorsed Trans. Collab. Comput. 2(9), e2 (2016)
Quigley, M., et al.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)
Ramaswamy, A., Monsuez, B., Tapus, A.: SafeRobots: a model-driven approach for designing robotic software architectures. In: Proceedings of CTS, pp. 131–134. IEEE (2014)
Rutle, A., Backer, J., Foldøy, K., Bye, R.T.: CommonLang: a DSL for defining robot tasks. In: Proceedings of MODELS18 Workshops. CEUR Workshop Proceedings, vol. 2245, pp. 433–442 (2018)
St-Onge, D., Varadharajan, V.S., Li, G., Svogor, I., Beltrame, G.: ROS and Buzz: consensus-based behaviors for heterogeneous teams. CoRR abs/1710.08843 (2017)
Wang, R.: A formal model-based design method for robotic systems. IEEE Syst. J. 13(1), 1096–1107 (2018)
Yan, Z., Jouandeau, N., Ali, A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst. 10, 1 (2013)
Acknowledgements
We thank the anonymous reviewers for their useful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bettini, L., Bourr, K., Pugliese, R., Tiezzi, F. (2022). Programming Multi-robot Systems with X-KLAIM. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-19759-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19758-1
Online ISBN: 978-3-031-19759-8
eBook Packages: Computer ScienceComputer Science (R0)