Abstract
In the modern Internet era the usage of social networks such as Twitter, Instagram and Facebook is constantly increasing. The analysis of this type of data can help us understand interesting social phenomena, because these networks intrinsically capture the new nature of user interactions. Unfortunately, social network data may reveal personal and sensitive information about users, leading to privacy violations. In this paper, we propose a study of privacy risk for social network data. In particular, we empirically analyze a set of privacy attacks on social network data by using the privacy risk assessment framework PRUDEnce. After simulating the attacks on real data, we first analyze how the privacy risk is distributed over the whole population. Then, we study the effect of high-risk users sanitization on some common network metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The EU General Data Protection Regulation can be found at http://bit.ly/1TlgbjI.
References
Abawajy, J.H., Ninggal, M.I.H., Herawan, T.: Vertex re-identification attack using neighbourhood-pair properties. Concurr. Comput. Pract. Exp. 28(10), 2906–2919 (2016). https://doi.org/10.1002/cpe.3687
Ananthula, S., Abuzaghleh, O., Alla, N.B., Chaganti, S.P., Kaja, P.C., Mogilineedi, D.: Measuring privacy in online social networks. Int. J. Secur. Priv. Trust Manag. 4(2), 01–09 (2015). https://doi.org/10.5121/ijsptm.2015.4201. www.airccse.org/journal/ijsptm/papers/4215ijsptm01.pdf
Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou R3579X? Anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 181–190. ACM, New York (2007). https://doi.org/10.1145/1242572.1242598
Becker, J., Chen, H.: Measuring Privacy Risk in Online Social Networks
Cavoukian, A.: Privacy by design the 7 foundational principles, August 2009. www.iab.org/wp-content/IAB-uploads/2011/03/fred_carter.pdf
Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements. Requir. Eng. 16(1), 3–32 (2011). https://doi.org/10.1007/s00766-010-0115-7
Islam, M.B., Iannella, R.: Privacy by design: does it matter for social networks? In: Privacy and Identity Management for Life - 7th IFIP WG 9.2, 9.6/11.7, 11.4, 11.6/PrimeLife International Summer School, Trento, Italy, 5–9 September 2011, Revised Selected Papers, pp. 207–220 (2011)
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
Liu, C., Yin, D., Li, H., Wang, W., Yang, W.: Preserving privacy in social networks against label pair attacks. In: Ma, L., Khreishah, A., Zhang, Y., Yan, M. (eds.) WASA 2017. LNCS, vol. 10251, pp. 381–392. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60033-8_34
Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online social networks. TKDD 5(1), 6:1–6:30 (2010). https://doi.org/10.1145/1870096.1870102
Mvungi, B., Iwaihara, M.: Associations between privacy, risk awareness, and interactive motivations of social networking service users, and motivation prediction from observable features. Comput. Hum. Behav. 44, 20–34 (2015). https://doi.org/10.1016/j.chb.2014.11.023
Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: Analyzing privacy risk in human mobility data. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 114–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_10
Pensa, R.G., Di Blasi, G.: A semi-supervised approach to measuring user privacy in online social networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 392–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_25
Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., Yanagihara, T.: PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosystems. Trans. Data Priv. 11, 139–167 (2018)
Rossetti, G., Milli, L., Giannotti, F., Pedreschi, D.: Forecasting success via early adoptions analysis: a data-driven study. PLoS ONE 12(12), e0189096 (2017)
Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: NDlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2017). https://doi.org/10.1007/s41060-017-0086-6
Sun, C., Yu, P.S., Kong, X., Fu, Y.: Privacy preserving social network publication against mutual friend attacks. Trans. Data Priv. 7(2), 71–97 (2014). www.tdp.cat/issues11/abs.a195a14.php
Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002). https://doi.org/10.1142/S0218488502001648
Swiderski, F., Snyder, W.: Threat Modeling. O’Reilly Media Inc., New York (2009). oCLC: 609857070
Tai, C., Yu, P.S., Yang, D., Chen, M.: Privacy-preserving social network publication against friendship attacks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1262–1270 (2011)
Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, Cancún, Mexico, 7–12 April 2008, pp. 506–515 (2008)
Acknowledgments
This work has been funded by the European projects SoBigData-PlusPlus (Grant Id 871042).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Pellungrini, R. (2022). Privacy Risk and Data Utility Assessment on Network Data. In: Bowles, J., Broccia, G., Pellungrini, R. (eds) From Data to Models and Back. DataMod 2021. Lecture Notes in Computer Science, vol 13268. Springer, Cham. https://doi.org/10.1007/978-3-031-16011-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-16011-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16010-3
Online ISBN: 978-3-031-16011-0
eBook Packages: Computer ScienceComputer Science (R0)