Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy Risk and Data Utility Assessment on Network Data

  • Conference paper
  • First Online:
From Data to Models and Back (DataMod 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13268))

Included in the following conference series:

Abstract

In the modern Internet era the usage of social networks such as Twitter, Instagram and Facebook is constantly increasing. The analysis of this type of data can help us understand interesting social phenomena, because these networks intrinsically capture the new nature of user interactions. Unfortunately, social network data may reveal personal and sensitive information about users, leading to privacy violations. In this paper, we propose a study of privacy risk for social network data. In particular, we empirically analyze a set of privacy attacks on social network data by using the privacy risk assessment framework PRUDEnce. After simulating the attacks on real data, we first analyze how the privacy risk is distributed over the whole population. Then, we study the effect of high-risk users sanitization on some common network metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The EU General Data Protection Regulation can be found at http://bit.ly/1TlgbjI.

References

  1. Abawajy, J.H., Ninggal, M.I.H., Herawan, T.: Vertex re-identification attack using neighbourhood-pair properties. Concurr. Comput. Pract. Exp. 28(10), 2906–2919 (2016). https://doi.org/10.1002/cpe.3687

    Article  Google Scholar 

  2. Ananthula, S., Abuzaghleh, O., Alla, N.B., Chaganti, S.P., Kaja, P.C., Mogilineedi, D.: Measuring privacy in online social networks. Int. J. Secur. Priv. Trust Manag. 4(2), 01–09 (2015). https://doi.org/10.5121/ijsptm.2015.4201. www.airccse.org/journal/ijsptm/papers/4215ijsptm01.pdf

  3. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou R3579X? Anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 181–190. ACM, New York (2007). https://doi.org/10.1145/1242572.1242598

  4. Becker, J., Chen, H.: Measuring Privacy Risk in Online Social Networks

    Google Scholar 

  5. Cavoukian, A.: Privacy by design the 7 foundational principles, August 2009. www.iab.org/wp-content/IAB-uploads/2011/03/fred_carter.pdf

  6. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements. Requir. Eng. 16(1), 3–32 (2011). https://doi.org/10.1007/s00766-010-0115-7

    Article  Google Scholar 

  7. Islam, M.B., Iannella, R.: Privacy by design: does it matter for social networks? In: Privacy and Identity Management for Life - 7th IFIP WG 9.2, 9.6/11.7, 11.4, 11.6/PrimeLife International Summer School, Trento, Italy, 5–9 September 2011, Revised Selected Papers, pp. 207–220 (2011)

    Google Scholar 

  8. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  9. Liu, C., Yin, D., Li, H., Wang, W., Yang, W.: Preserving privacy in social networks against label pair attacks. In: Ma, L., Khreishah, A., Zhang, Y., Yan, M. (eds.) WASA 2017. LNCS, vol. 10251, pp. 381–392. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60033-8_34

    Chapter  Google Scholar 

  10. Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online social networks. TKDD 5(1), 6:1–6:30 (2010). https://doi.org/10.1145/1870096.1870102

  11. Mvungi, B., Iwaihara, M.: Associations between privacy, risk awareness, and interactive motivations of social networking service users, and motivation prediction from observable features. Comput. Hum. Behav. 44, 20–34 (2015). https://doi.org/10.1016/j.chb.2014.11.023

    Article  Google Scholar 

  12. Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: Analyzing privacy risk in human mobility data. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 114–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_10

    Chapter  Google Scholar 

  13. Pensa, R.G., Di Blasi, G.: A semi-supervised approach to measuring user privacy in online social networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 392–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_25

    Chapter  Google Scholar 

  14. Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., Yanagihara, T.: PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosystems. Trans. Data Priv. 11, 139–167 (2018)

    Google Scholar 

  15. Rossetti, G., Milli, L., Giannotti, F., Pedreschi, D.: Forecasting success via early adoptions analysis: a data-driven study. PLoS ONE 12(12), e0189096 (2017)

    Article  Google Scholar 

  16. Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: NDlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2017). https://doi.org/10.1007/s41060-017-0086-6

    Article  Google Scholar 

  17. Sun, C., Yu, P.S., Kong, X., Fu, Y.: Privacy preserving social network publication against mutual friend attacks. Trans. Data Priv. 7(2), 71–97 (2014). www.tdp.cat/issues11/abs.a195a14.php

  18. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002). https://doi.org/10.1142/S0218488502001648

    Article  MathSciNet  MATH  Google Scholar 

  19. Swiderski, F., Snyder, W.: Threat Modeling. O’Reilly Media Inc., New York (2009). oCLC: 609857070

    Google Scholar 

  20. Tai, C., Yu, P.S., Yang, D., Chen, M.: Privacy-preserving social network publication against friendship attacks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1262–1270 (2011)

    Google Scholar 

  21. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, Cancún, Mexico, 7–12 April 2008, pp. 506–515 (2008)

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the European projects SoBigData-PlusPlus (Grant Id 871042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pellungrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pellungrini, R. (2022). Privacy Risk and Data Utility Assessment on Network Data. In: Bowles, J., Broccia, G., Pellungrini, R. (eds) From Data to Models and Back. DataMod 2021. Lecture Notes in Computer Science, vol 13268. Springer, Cham. https://doi.org/10.1007/978-3-031-16011-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16011-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16010-3

  • Online ISBN: 978-3-031-16011-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics