Nothing Special   »   [go: up one dir, main page]

Skip to main content

Artificial Intelligence Based Robotic Automation of Manual Assembly Tasks for Intelligent Manufacturing

  • Conference paper
  • First Online:
Smart, Sustainable Manufacturing in an Ever-Changing World

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Increasing product customization and shortening product life cycles in an ever-changing world is challenging for automation. This is especially true for assembly tasks, requiring a high level of perception, skill, and adaptability. With the rise of smart manufacturing, intelligent manufacturing, and other aspects related to Industry 4.0, the hurdles for automation of the aforementioned tasks are getting reduced. Especially Artificial Intelligence (AI) is expected to enable smart and flexible automation since it is possible to deduct decisions from unknown multidimensional correlations in sensor data, which is critical for the assembly of highly customized products. In this research paper, three different conventional and AI-based glue detection models are proposed with the target to automate a gluing process in a manual assembly of highly customized products in a batch size one production scenario. A conventional, one-dimensional rule-based model, and two hybrid models using a support vector machine image classifier (SVM) and either Tamura features or convolutional neural network (CNN) feature extraction are presented and compared. The obtained results demonstrate the efficiency and robustness of AI-based algorithms, as the CNN and SVM hybrid model outperforms the other two approaches achieving a prediction accuracy of >99% at the fastest classification speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanders, D., Gegov, A.: AI tools for use in assembly automation and some examples of recent applications. Assem. Autom. (2013)

    Google Scholar 

  2. Outón, J.L., Villaverde, I., Herrero, H., Esnaola, U., Sierra, B.: Innovative mobile manipulator solution for modern flexible manufacturing processes. Sensors 19(24), 5414 (2019)

    Article  Google Scholar 

  3. Kleindienst, M., Ramsauer, C.: Der Beitrag von Lernfabriken zu Industrie 4.0-Ein Baustein zur vierten industriellen Revolution bei kleinen und mittelständischen Unternehmen. Industrie-Management 3, 41–44 (2015)

    Google Scholar 

  4. Scholer, M.: Wandlungsfähige und angepasste Automation in der Automobilmontage mittels durchgängigem modularem Engineering - Am Beispiel der Mensch-Roboter-Kooperation in der Unterbodenmontage. Universität des Saarlandes (2018)

    Google Scholar 

  5. Lotter, E.: Hybride Montagesysteme. In: Lotter, B., Wiendahl, H.-P. (eds.) Montage in der industriellen Produktion, 2nd edn., pp. 167–194. Springer Verlag Berlin Heidelberg, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Wang, L.: From intelligence science to intelligent manufacturing. Engineering 5(4), 615–618 (2019). https://doi.org/10.1016/j.eng.2019.04.011

    Article  Google Scholar 

  7. Wang, B., Tao, F., Fang, X., Liu, C., Liu, Y., Freiheit, T.: Smart manufacturing and intelligent manufacturing: a comparative review. Engineering 7(6), 738–757 (2021). https://doi.org/10.1016/j.eng.2020.07.017

    Article  Google Scholar 

  8. Simeth, A., Plaßmann, J., Plapper, P.: Detection of fluid level in bores for batch size one assembly automation using convolutional neural network. In: Dolgu, A., et al. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. IFIP International Federation for Information Processing. APMS 2021, IFIP AICT 632, pp. 86–93. Springer International Publishing, Cham (2021)

    Google Scholar 

  9. Huang, Y., Wu, C., Chang, C.-Y.: An application of image processing in flat panels. In: 2012 International Conference on Wavelet Active Media Technology and Information Processing (ICWAMTIP), pp. 8–11 (2012). https://doi.org/10.1109/ICWAMTIP.2012.6413427

  10. Felipe, M.A.A., Olegario, T.V., Bugtai, N.T., Baldovino, R.G.: Vision-based liquid level detection in amber glass bottles using OpenCV. In: 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), pp. 148–152 (2019). https://doi.org/10.1109/RITAPP.2019.8932807

  11. Pithadiya, K.J., Modi, C.K., Chauhan, J.D.: Machine vision based liquid level inspection system using ISEF edge detection technique. In: Proceedings of the International Conference and Workshop on Emerging Trends in Technology, pp. 601–605 (2010). https://doi.org/10.1145/1741906.1742044

  12. Gonzalez Ramirez, M.M., Villamizar Rincon, J.C., Lopez Parada, J. F.: Liquid level control of Coca-Cola bottles using an automated system. In: 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP), pp. 148–154 (2014). https://doi.org/10.1109/CONIELECOMP.2014.6808582

  13. Ma, H., Peng, L.: Vision based liquid level detection and bubble area segmentation in liquor distillation. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6 (2019). https://doi.org/10.1109/IST48021.2019.9010097

  14. Beck, T., Gatternig, B., Delgado, A.: Schaum-und Füllstanderkennung mittels optischer Systeme mit neuronalen Algorithmen. In: Fachtagung „Experimentelle Strömungsmechanik, pp. 17.1–17.7 (2019)

    Google Scholar 

  15. Huang, Z., Angadi, V.C., Danishvar, M., Mousavi, A., Li, M.: Zero defect manufacturing of microsemiconductors—an application of machine learning and artificial intelligence. In: 2018 5th International Conference on Systems and Informatics (ICSAI), pp. 449–454 (2018). https://doi.org/10.1109/ICSAI.2018.8599292

  16. Karmakar, P., Teng, S., Zhang, D., Liu, Y., Lu, G.: Improved tamura features for image classification using kernel based descriptors. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7 (2017)

    Google Scholar 

  17. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man. Cybern. 8(6), 460–473 (1978). https://doi.org/10.1109/TSMC.1978.4309999

    Article  Google Scholar 

  18. Chi, J., Yu, X., Zhang, Y., Wang, H.: A novel local human visual perceptual texture description with key feature selection for texture classification. Math. Probl. Eng. 1, 2019 (2019). https://doi.org/10.1155/2019/3756048

    Article  Google Scholar 

  19. MathWorks: Pretrained Deep Neural Networks (2021). https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html. Accessed 8 April 2021

  20. ImageNet. http://www.image-net.org. Accessed 21 Aug 2021

  21. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). [Online]. Available: http://arxiv.org/abs/1409.0575

  22. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020). [Online]. Available: http://arxiv.org/abs/2004.10934

  23. Arun Kumar, T.K., Vinayakumar, R., Sajith Variyar, V.V., Sowmya, V., Soman, K.P.: Convolutional neural networks for fingerprint liveness detection system. In: 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pp. 243–246 (2019). https://doi.org/10.1109/ICCS45141.2019.9065713

  24. Arouna, B.: Adaptative Monte Carlo method, a variance reduction technique. Monte Carlo Methods Appl. 10(1), 1–24 (2004). https://doi.org/10.1515/156939604323091180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexej Simeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simeth, A., Plapper, P. (2023). Artificial Intelligence Based Robotic Automation of Manual Assembly Tasks for Intelligent Manufacturing. In: von Leipzig, K., Sacks, N., Mc Clelland, M. (eds) Smart, Sustainable Manufacturing in an Ever-Changing World. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-15602-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15602-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15601-4

  • Online ISBN: 978-3-031-15602-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics