Abstract
Increasing product customization and shortening product life cycles in an ever-changing world is challenging for automation. This is especially true for assembly tasks, requiring a high level of perception, skill, and adaptability. With the rise of smart manufacturing, intelligent manufacturing, and other aspects related to Industry 4.0, the hurdles for automation of the aforementioned tasks are getting reduced. Especially Artificial Intelligence (AI) is expected to enable smart and flexible automation since it is possible to deduct decisions from unknown multidimensional correlations in sensor data, which is critical for the assembly of highly customized products. In this research paper, three different conventional and AI-based glue detection models are proposed with the target to automate a gluing process in a manual assembly of highly customized products in a batch size one production scenario. A conventional, one-dimensional rule-based model, and two hybrid models using a support vector machine image classifier (SVM) and either Tamura features or convolutional neural network (CNN) feature extraction are presented and compared. The obtained results demonstrate the efficiency and robustness of AI-based algorithms, as the CNN and SVM hybrid model outperforms the other two approaches achieving a prediction accuracy of >99% at the fastest classification speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sanders, D., Gegov, A.: AI tools for use in assembly automation and some examples of recent applications. Assem. Autom. (2013)
Outón, J.L., Villaverde, I., Herrero, H., Esnaola, U., Sierra, B.: Innovative mobile manipulator solution for modern flexible manufacturing processes. Sensors 19(24), 5414 (2019)
Kleindienst, M., Ramsauer, C.: Der Beitrag von Lernfabriken zu Industrie 4.0-Ein Baustein zur vierten industriellen Revolution bei kleinen und mittelständischen Unternehmen. Industrie-Management 3, 41–44 (2015)
Scholer, M.: Wandlungsfähige und angepasste Automation in der Automobilmontage mittels durchgängigem modularem Engineering - Am Beispiel der Mensch-Roboter-Kooperation in der Unterbodenmontage. Universität des Saarlandes (2018)
Lotter, E.: Hybride Montagesysteme. In: Lotter, B., Wiendahl, H.-P. (eds.) Montage in der industriellen Produktion, 2nd edn., pp. 167–194. Springer Verlag Berlin Heidelberg, Berlin, Heidelberg (2012)
Wang, L.: From intelligence science to intelligent manufacturing. Engineering 5(4), 615–618 (2019). https://doi.org/10.1016/j.eng.2019.04.011
Wang, B., Tao, F., Fang, X., Liu, C., Liu, Y., Freiheit, T.: Smart manufacturing and intelligent manufacturing: a comparative review. Engineering 7(6), 738–757 (2021). https://doi.org/10.1016/j.eng.2020.07.017
Simeth, A., Plaßmann, J., Plapper, P.: Detection of fluid level in bores for batch size one assembly automation using convolutional neural network. In: Dolgu, A., et al. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. IFIP International Federation for Information Processing. APMS 2021, IFIP AICT 632, pp. 86–93. Springer International Publishing, Cham (2021)
Huang, Y., Wu, C., Chang, C.-Y.: An application of image processing in flat panels. In: 2012 International Conference on Wavelet Active Media Technology and Information Processing (ICWAMTIP), pp. 8–11 (2012). https://doi.org/10.1109/ICWAMTIP.2012.6413427
Felipe, M.A.A., Olegario, T.V., Bugtai, N.T., Baldovino, R.G.: Vision-based liquid level detection in amber glass bottles using OpenCV. In: 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA), pp. 148–152 (2019). https://doi.org/10.1109/RITAPP.2019.8932807
Pithadiya, K.J., Modi, C.K., Chauhan, J.D.: Machine vision based liquid level inspection system using ISEF edge detection technique. In: Proceedings of the International Conference and Workshop on Emerging Trends in Technology, pp. 601–605 (2010). https://doi.org/10.1145/1741906.1742044
Gonzalez Ramirez, M.M., Villamizar Rincon, J.C., Lopez Parada, J. F.: Liquid level control of Coca-Cola bottles using an automated system. In: 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP), pp. 148–154 (2014). https://doi.org/10.1109/CONIELECOMP.2014.6808582
Ma, H., Peng, L.: Vision based liquid level detection and bubble area segmentation in liquor distillation. In: 2019 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6 (2019). https://doi.org/10.1109/IST48021.2019.9010097
Beck, T., Gatternig, B., Delgado, A.: Schaum-und Füllstanderkennung mittels optischer Systeme mit neuronalen Algorithmen. In: Fachtagung „Experimentelle Strömungsmechanik, pp. 17.1–17.7 (2019)
Huang, Z., Angadi, V.C., Danishvar, M., Mousavi, A., Li, M.: Zero defect manufacturing of microsemiconductors—an application of machine learning and artificial intelligence. In: 2018 5th International Conference on Systems and Informatics (ICSAI), pp. 449–454 (2018). https://doi.org/10.1109/ICSAI.2018.8599292
Karmakar, P., Teng, S., Zhang, D., Liu, Y., Lu, G.: Improved tamura features for image classification using kernel based descriptors. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7 (2017)
Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man. Cybern. 8(6), 460–473 (1978). https://doi.org/10.1109/TSMC.1978.4309999
Chi, J., Yu, X., Zhang, Y., Wang, H.: A novel local human visual perceptual texture description with key feature selection for texture classification. Math. Probl. Eng. 1, 2019 (2019). https://doi.org/10.1155/2019/3756048
MathWorks: Pretrained Deep Neural Networks (2021). https://www.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html. Accessed 8 April 2021
ImageNet. http://www.image-net.org. Accessed 21 Aug 2021
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). [Online]. Available: http://arxiv.org/abs/1409.0575
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020). [Online]. Available: http://arxiv.org/abs/2004.10934
Arun Kumar, T.K., Vinayakumar, R., Sajith Variyar, V.V., Sowmya, V., Soman, K.P.: Convolutional neural networks for fingerprint liveness detection system. In: 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pp. 243–246 (2019). https://doi.org/10.1109/ICCS45141.2019.9065713
Arouna, B.: Adaptative Monte Carlo method, a variance reduction technique. Monte Carlo Methods Appl. 10(1), 1–24 (2004). https://doi.org/10.1515/156939604323091180
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Simeth, A., Plapper, P. (2023). Artificial Intelligence Based Robotic Automation of Manual Assembly Tasks for Intelligent Manufacturing. In: von Leipzig, K., Sacks, N., Mc Clelland, M. (eds) Smart, Sustainable Manufacturing in an Ever-Changing World. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-15602-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-15602-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15601-4
Online ISBN: 978-3-031-15602-1
eBook Packages: EngineeringEngineering (R0)