Abstract
Enterprise knowledge graphs are increasingly adopted in industrial settings to integrate heterogeneous systems and data landscapes. Manufacturing systems can benefit from knowledge graphs as they contribute towards implementing visions of interconnected, decentralized and flexible smart manufacturing systems. Process knowledge is a key perspective which has so far attracted limited attention in this context, despite its usefulness for capturing the context in which data are generated. Such knowledge is commonly expressed in diagrammatic languages and the resulting models can not readily be used in knowledge graph construction. We propose BPMN2KG to address this problem. BPMN2KG is a transformation tool from BPMN2.0 process models into knowledge graphs. Thereby BPMN2KG creates a frame for process-centric data integration and analysis with this transformation. We motivate and evaluate our transformation tool with a real-world industrial use case focused on quality management in plastic injection molding for the automotive sector. We use BPMN2KG for process-centric integration of dispersed production systems data that results in an integrated knowledge graph that can be queried using SPARQL, a standardized graph-pattern based query language. By means of several example queries, we illustrate how this knowledge graph benefits data contextualization and integrated analysis. In a broader context, we contribute towards the vision of a process-centric enterprise Knowledge Graph (KG). BPMN2KG is available at https://short.wu.ac.at/BPMN2KG, and the sample queries and results at https://short.wu.ac.at/DEXA2022.
This research has received funding from the Teaming.AI project, which is part of the European Union’s Horizon 2020 research and innovation program under grant agreement No 957402.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
BPMN2KG is available at https://short.wu.ac.at/BPMN2KG.
- 2.
- 3.
- 4.
- 5.
RMLMapper: https://github.com/RMLio/rmlmapper-java with commit 54bf875.
- 6.
You can find the query (Q4) at https://short.wu.ac.at/DEXA2022-Q4.
- 7.
References
Erasmus, J., Vanderfeesten, I., Traganos, K., Grefen, P.: Using business process models for the specification of manufacturing operations. Comput. Ind. 123, 103297 (2020)
Abouzid, I., Saidi, R.: Proposal of BPMN extensions for modelling manufacturing processes. In: 5th International Conference on Optimization and Applications (ICOA), pp. 1–6. IEEE (2019)
Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically enhanced business process modeling notation. In: Semantic Technologies for Business and Information Systems Engineering: Concepts and Applications, pp. 259–275. IGI Global (2012)
Ahn, H., Chang, T.-W.: Measuring similarity for manufacturing process models. In: Moon, I., Lee, G.M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 223–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_28
Annane, A., Aussenac-Gilles, N., Kamel, M.: BBO: BPMN 2.0 based ontology for business process representation. In: 20th European Conference on Knowledge Management (ECKM 2019), vol. 1, pp. 49–59, Lisbon, Portugal, September 2019
Bachhofner, S., Kiesling, E., Kabul, K., Sallinger, E., Waibel, P.: Knowledge graph modularization for cyber-physical production systems. In: International Semantic Web Conference (Poster). Virtual Conference, October 2021
Buchgeher, G., Gabauer, D., Martinez-Gil, J., Ehrlinger, L.: Knowledge graphs in manufacturing and production: a systematic literature review. IEEE Access 9, 55537–55554 (2021)
Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extracting event logs from legacy data: the onprom tool and methodology. In: Abramowicz, W. (ed.) BIS 2017. LNBIP, vol. 288, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59336-4_16
Cinpoeru, M., Ghiran, A.-M., Harkai, A., Buchmann, R.A., Karagiannis, D.: Model-driven context configuration in business process management systems: an approach based on knowledge graphs. In: Pańkowska, M., Sandkuhl, K. (eds.) BIR 2019. LNBIP, vol. 365, pp. 189–203. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31143-8_14
Clark, J., DeRose, S.: XML path language (XPath) version 1.0. W3C recommendation, W3C, November 1999. https://www.w3.org/TR/1999/REC-xpath-19991116/
Corea, C., Fellmann, M., Delfmann, P.: Ontology-based process modelling - will we live to see it? In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_4
Cyganiak, R., Sundara, S., Das, S.: R2RML: RDB to RDF mapping language. W3C recommendation, W3C, September 2012. https://www.w3.org/TR/2012/REC-r2rml-20120927/
Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax. W3c recommendation, World Wide Web Consortium, 25 February 2014. https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C recommendation, W3C, September 2012. https://www.w3.org/TR/2012/REC-r2rml-20120927/
Erasmus, J., Vanderfeesten, I., Traganos, K., Grefen, P.: The case for unified process management in smart manufacturing. In: 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), pp. 218–227 (2018)
Grangel-González, I., Halilaj, L., Vidal, M.-E., Rana, O., Lohmann, S., Auer, S., Müller, A.W.: Knowledge graphs for semantically integrating cyber-physical systems. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11029, pp. 184–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98809-2_12
Hoch, T., et al.: Teaming.AI: enabling human-AI teaming intelligence in manufacturing. In: Proceedings of Interoperability for Enterprise Systems and Applications Workshops: AI Beyond Efficiency: Interoperability towards Industry 5.0. Springer, Valencia (2022)
Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37 (2021)
Indulska, M., Recker, J., Rosemann, M., Green, P.: Business process modeling: current issues and future challenges. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02144-2_39
Kagermann, H., Wahlster, W., Helbig, J., et al.: Recommendations for implementing the strategic initiative Industrie 4.0: final report of the Industrie 4.0 working group. Technical report, Berlin, Germany (2013)
Kchaou, M., Khlif, W., Gargouri, F., Mahfoudh, M.: Transformation of BPMN model into an OWL2 ontology. In: International Conference on Evaluation of Novel Approaches to Software Engineering, pp. 380–388. Virtual Event, April 2021
Klingenberg, C.O., Borges, M.A.V., Antunes Jr., J.A.V.: Industry 4.0 as a data-driven paradigm: a systematic literature review on technologies. J. Manuf. Technol. Manag. (2019)
Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph. In: International Semantic Web Conference, pp. 376–394, Monterey, California, USA, October 2018
Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)
Business Process Model and Notation (BPMN) 2.0 specification (2011). https://www.omg.org/spec/BPMN/2.0/PDF, version 2
Patel, P., Ali, M.I., Sheth, A.: From raw data to smart manufacturing: AI and semantic web of things for industry 4.0. IEEE Intell. Syst. 33(4), 79–86 (2018)
Polyvyanyy, A., Pika, A., ter Hofstede, A.H.: Scenario-based process querying for compliance, reuse, and standardization. Inf. Syst. 93, 101563 (2020)
Riehle, D.M., Jannaber, S., Delfmann, P., Thomas, O., Becker, J.: Automatically annotating business process models with ontology concepts at design-time. In: de Cesare, S., Frank, U. (eds.) ER 2017. LNCS, vol. 10651, pp. 177–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70625-2_17
Rivas, A., Grangel-González, I., Collarana, D., Lehmann, J., Vidal, M.-E.: Unveiling relations in the Industry 4.0 standards landscape based on knowledge graph embeddings. In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2020. LNCS, vol. 12392, pp. 179–194. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59051-2_12
Roy, S., Dayan, G.S., Devaraja Holla, V.: Modeling industrial business processes for querying and retrieving using OWL+SWRL. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 516–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02671-4_31
Scheer, A.W., Thomas, O., Adam, O.: Process Modeling using Event-Driven Process Chains, Chap. 6, pp. 119–145. Wiley, New York (2005)
Schneider, P.: Managerial challenges of industry 4.0: an empirically backed research agenda for a nascent field. Rev. Manag. Sci. 12(3), 803–848 (2018)
Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of the business process modeling notation. In: Seminal Contributions to Information Systems Engineering. LNCS, pp. 429–443. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36926-1_35
Acknowledgement
This work has also received funding from the Teaming.AI project in the European Union’s Horizon 2020 research and innovation program under grant agreement No 95740.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A SPARQL Queries and Results
A SPARQL Queries and Results
Due to space constraints, we deleted all prefix statements in the following queries and completely exclude (Q2), (Q3), and (Q4) – you can find all queries with the full syntax and the results at https://short.wu.ac.at/DEXA2022.
SPARQL query and result for (Q1) showing data flows between activities and data stores.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bachhofner, S., Kiesling, E., Revoredo, K., Waibel, P., Polleres, A. (2022). Automated Process Knowledge Graph Construction from BPMN Models. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2022. Lecture Notes in Computer Science, vol 13426. Springer, Cham. https://doi.org/10.1007/978-3-031-12423-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-12423-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12422-8
Online ISBN: 978-3-031-12423-5
eBook Packages: Computer ScienceComputer Science (R0)