Abstract
Smartphone has become the 4th basic necessity of human being after Food, Cloths and Home. It has become an integral part of the life that most of the business and office work can be operated by mobile phone and the demand for online classes demand for all class of students have become a compulsion without any alternate due to the COVID-19 pandemic. Android is considered as the most prevailing and used operating system for the mobile phone on this planet and for the same reason it is the most targeted mobile operating system by the hackers. Android malware has been increasing every quarter and every year. An android malware is installed and executed on the smartphones quietly without any indication and user’s acceptance, that possess threats to the consumer’s personal and/or classified information stored. To address these threats, varieties of techniques have been proposed by the researchers like Static, Dynamic and Hybrid. In this paper a systematic review has been carried out on the relevant studies from 2017 to 2020. Assessment of the malware detection capabilities of various techniques used by different researchers has been carried out with comparison of the performance of different machine learning models for the detection of android malwares by assessing the results of empirical evidences such as datasets, features, tools, etc. However the android malware detection still faces several challenges and the possible solution with some novel approach or technique to improve the detection capabilities is discussed in the discussion and conclusion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
StatCounter Global Stats - https://gs.statcounter.com/os-market-share
Nokia Threat Intelligence Report 2020
Nokia Threat Intelligence Report 2019
Kaspersky Team: Malicious Android app had more than 100 million downloads in Google Play – Kaspersky (2019)
Ravie, L.: Joker Malware Apps Once Again Bypass Google's Security to Spread via Play Store – The Hacker News (2020)
Ravie, L.: Watch Out—Microsoft Warns Android Users About A New Ransomware – The Hacker News (2020)
Mohit K., Judy Android Malware Infects Over 36.5 Million Google Play Store Users – The Hacker News, May 2017
Swati, K.: Mysterious malware that re-installs itself infected over 45,000 Android Phones – The Hacker News (2019)
Xiao, X., Xiao, X., Jiang, Y., Li, Q.: Detecting mobile malware with TMSVM. In: Tian, J., Jing, J., Srivatsa, M. (eds.) International Conference on Security and Privacy in Communication Networks, LNICST, vol. 15, pp. 507–516. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-23829-6_35
Mercaldo, F., Santone, A.: Deep learning for image-based mobile malware detection. J. Comput. Virol. Hack. Tech. 16(2), 157–171 (2020). https://doi.org/10.1007/s11416-019-00346-7
Afifi, F., Anuar, N. B., Shamshirband, S., Choo, K.K.R.: DyHAP: Dynamic hybrid ANFIS-PSO approach for predicting mobile malware. PloS one 11(9) (2016)
Chen, Z., et al.: Machine learning based mobile malware detection using highly imbalanced network traffic. Inf. Sci. 433, 346–364 (2018)
Jang, J.-W., Yun, J., Mohaisen, A., Woo, J., Kim, H.K.: Detecting and classifying method based on similarity matching of Android malware behavior with profile. Springerplus 5(1), 1–23 (2016). https://doi.org/10.1186/s40064-016-1861-x
Karim, A., Salleh, R., Khan, M.K.: SMARTbot: a behavioral analysis framework augmented with machine learning to identify mobile botnet applications. PloS one, 11(3) (2016)
Khoda, M.E., Kamruzzaman, J., Gondal, I., Imam, T., Rahman, A.: Mobile malware detection: an analysis of deep learning model. In: 2019 IEEE International Conference on Industrial Technology (ICIT), pp. 1161–1166. IEEE (2019)
Narudin, F.A., Feizollah, A., Anuar, N.B., Gani, A.: Evaluation of machine learning classifiers for mobile malware detection. Soft. Comput. 20(1), 343–357 (2014). https://doi.org/10.1007/s00500-014-1511-6
Qamar, A., Karim, A., Chang, V.: Mobile malware attacks: Review, taxonomy & future directions. Futur. Gener. Comput. Syst. 97, 887–909 (2019)
Wang, C., Wu, Z., Li, X., Zhou, X., Wang, A., Hung, P.C.: SmartMal: a service-oriented behavioral malware detection framework for mobile devices. Sci. World J. 2014, 1–11 (2014)
Wang, X., Yang, Y., Zeng, Y.: Accurate mobile malware detection and classification in the cloud. Springerplus 4(1), 1–23 (2015). https://doi.org/10.1186/s40064-015-1356-1
Karumudi, B.R., Chandrasekaran, S., Armour, B., Alsmadi, I.: Malware Prediction and Classification Using Advanced Modeling Techniques (2017)
Yan, P., Yan, Z.: A survey on dynamic mobile malware detection. Software Qual. J. 26(3), 891–919 (2017). https://doi.org/10.1007/s11219-017-9368-4
Swetha, K., Kiran, K.V.D.: Survey on mobile malware analysis and detection. Int. J. Eng. Technol 7(2.32), 279–282 (2018)
Gyamfi, N.K., Owusu, E.: Survey of mobile malware analysis, detection techniques and tool. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1101–1107. IEEE (2018)
Salah, A., Shalabi, E., Khedr, W.: A lightweight android malware classifier using novel feature selection methods. Symmetry 12(5), 858 (2020)
Alazab, M.: Automated malware detection in mobile app stores based on robust feature generation. Electronics 9(3), 435 (2020)
Roy, A., Jas, D.S., Jaggi, G., Sharma, K.: Android malware detection based on vulnerable feature aggregation. Procedia Comput. Sci. 173, 345–353 (2020)
Wu, B., et al.: Why an Android App is Classified as Malware? Towards Malware Classification Interpretation. arXiv preprint arXiv:2004.11516 (2020)
Deepa, K., Radhamani, G., Vinod, P.: Investigation of feature selection methods for android malware analysis. Procedia Comput. Sci. 46, 841–848 (2017)
Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z., Conti, M.: Similarity-based Android malware detection using Hamming distance of static binary features. Futur. Gener. Comput. Syst. 105, 230–247 (2020)
Almin, S.B., Chatterjee, M.: A novel approach to detect android malware. Procedia Comput. Sci. 45, 407–417 (2015)
Nellaivadivelu, G., Di Troia, F., Stamp, M.: Black box analysis of android malware detectors. Array 6, 100022 (2020)
Christianah, A., Gyunka, B., Oluwatobi, A.: Optimizing Android Malware Detection Via Ensemble Learning (2020)
Rathore, H., Sahay, S.K., Chaturvedi, P., Sewak, M.:, December). Android malicious application classification using clustering. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds.) International Conference on Intelligent Systems Design and Applications, AISC, vol. 941, pp. 659–667. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_64
Ali, W.: Hybrid intelligent Android malware detection using evolving support vector machine based on genetic algorithm and particle swarm optimization. IJCSNS 19(9), 15 (2019)
Egitmen, A., Bulut, I., Aygun, R., Gunduz, A.B., Seyrekbasan, O., Yavuz, A.G.: Combat mobile evasive malware via skip-gram-based malware detection. Security and Communication Networks (2020)
Niu, W., Cao, R., Zhang, X., Ding, K., Zhang, K., Li, T.: OpCode-level function call graph based android malware classification using deep learning. Sensors 20(13), 3645 (2020)
Islam, T., Rahman, S.S.M.M., Hasan, M.A., Rahaman, A.S.M.M., Jabiullah, M.I.: Evaluation of N-gram based multi-layer approach to detect malware in Android. Procedia Comput. Sci. 171, 1074–1082 (2020)
Wang, J., Jing, Q., Gao, J., Qiu, X.: SEdroid: a robust Android malware detector using selective ensemble learning. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–5. IEEE (2020)
Ma, Z., Ge, H., Wang, Z., Liu, Y., Liu, X.: Droidetec: Android malware detection and malicious code localization through deep learning. arXiv preprint arXiv:2002.03594 (2020)
Dillon, K.: Feature-level Malware Obfuscation in Deep Learning. arXiv preprint arXiv:2002.05517 (2020)
Akram, J., Shi, Z., Mumtaz, M., Luo, P.: DroidSD: An efficient indexed based android applications similarity detection tool. J. Inf. Sci. Eng. 36(1) (2020)
Koli, J.D.: RanDroid: Android malware detection using random machine learning classifiers. In: 2018 Technologies for Smart-City Energy Security and Power (ICSESP), pp. 1–6. IEEE (2018)
Massarelli, L., Aniello, L., Ciccotelli, C., Querzoni, L., Ucci, D., Baldoni, R.: AndroDFA: Android malware classification based on resource consumption. Information 11(6), 326 (2020)
Abderrahmane, A., Adnane, G., Yacine, C., Khireddine, G.: Android malware detection based on system calls analysis and CNN classification. In: 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW), pp. 1–6. IEEE (2019)
He, G., Xu, B., Zhang, L., Zhu, H.: On-Device Detection of Repackaged Android Malware via Traffic Clustering. Security and Communication Networks (2020)
Wang, S., et al.: Deep and broad URL feature mining for android malware detection. Inf. Sci. 513, 600–613 (2020)
Takawale, H.C., Thakur, A.: Talos app: on-device machine learning using tensorflow to detect android malware. In: 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, pp. 250–255. IEEE (2018)
Martín, A., Rodríguez-Fernández, V., Camacho, D.: CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains. Eng. Appl. Artif. Intell. 74, 121–133 (2018)
Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., Awajan, A.: Intelligent mobile malware detection using permission requests and API calls. Futur. Gener. Comput. Syst. 107, 509–521 (2020)
Su, X., Xiao, L., Li, W., Liu, X., Li, K.C., Liang, W.: DroidPortrait: Android malware portrait construction based on multidimensional behavior analysis. Appl. Sci. 10(11), 3978 (2020)
Bhatia, T., Kaushal, R.: Malware detection in android based on dynamic analysis. In: 2017 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), pp. 1–6. IEEE (2017)
Cai, H., Fu, X., Hamou-Lhadj, A.: A study of run-time behavioral evolution of benign versus malicious apps in android. Inf. Softw. Technol. 122, 106291 (2020)
Thangavelooa, R., Jinga, W.W., Lenga, C.K., Abdullaha, J.: DATDroid: dynamic analysis technique in Android malware detection. Int. J. Adv. Sci. Eng. Inf. Technol. 10(2), 536–541 (2020)
Mahindru, A., Singh, P.: Dynamic permissions based android malware detection using machine learning techniques. In: Proceedings of the 10th Innovations in Software Engineering Conference, pp. 202–210 (2017)
Kim, D.W., Na, K.G., Han, M.M., Kim, M., Go, W., Park, J.H.: Malware application classification based on feature extraction and machine learning for malicious behavior analysis in Android platform. J. Internet Comput. Serv. 19(1), 27–35 (2018)
Wang, X., Li, C.: KerTSDroid: detecting android malware at scale through kernel task structures. In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 870–879. IEEE (2019)
Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: Samadroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access 6, 4321–4339 (2018)
Zhang, Y., et al.: Familial clustering for weakly-labeled android malware using hybrid representation learning. IEEE Trans. Inf. Forensics Secur. 15, 3401–3414 (2019)
Patel, K., Buddadev, B.: Detection and mitigation of android malware through hybrid approach. In: Abawajy, J., Mukherjea, S., Thampi, S., Ruiz-Martínez, A. (eds.) International Symposium on Security in Computing and Communication, CCIS, vol. 536, pp. 455–463. Springer, Cham. https://doi.org/10.1007/978-3-319-22915-7_41
Martín, A., Lara-Cabrera, R., Camacho, D.: Android malware detection through hybrid features fusion and ensemble classifiers: the AndroPyTool framework and the OmniDroid dataset. Inf. Fus. 52, 128–142 (2019)
Jannat, U.S., Hasnayeen, S.M., Shuhan, M.K.B., Ferdous, M.S.: Analysis and detection of malware in Android applications using machine learning. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–7. IEEE (2019
Surendran, R., Thomas, T., Emmanuel, S.: A TAN based hybrid model for android malware detection. J. Inf. Secur. Appl. 54, 102483 (2020)
Demertzis, K., Iliadis, L.: Bio-inspired hybrid intelligent method for detecting android malware. In: Kunifuji, S., Papadopoulos, G., Skulimowski, A., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems, AISC, Vol. 416, pp. 289–304. Springer, Cham. https://doi.org/10.1007/978-3-319-27478-2_20
Vinayakumar, R., Soman, K.P., Poornachandran, P., Sachin Kumar, S.: Detecting Android malware using long short-term memory (LSTM). J. Intell. Fuzzy Syst. 34(3), 1277–1288 (2018)
Kouliaridis, V., Kambourakis, G., Geneiatakis, D., Potha, N.: Two anatomists are better than one—dual-level Android malware detection. Symmetry 12(7), 1128 (2020)
Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DL-Droid: Deep learning based android malware detection using real devices. Comput. Secur. 89, 101663 (2020)
Kato, H., Haruta, S., Sasase, I.: Android malware detection scheme based on level of SSL server certificate. IEICE Trans. Inf. Syst. 103(2), 379–389 (2020)
Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in Android. J. Parallel Distrib. Comput. 103, 22–31 (2017)
Kabakus, A.T., Dogru, I.A.: An in-depth analysis of Android malware using hybrid techniques. Digit. Investig. 24, 25–33 (2018)
Gong, L., et al.: Experiences of landing machine learning onto market-scale mobile malware detection. In: Proceedings of the Fifteenth European Conference on Computer Systems, pp. 1–14 (2020)
Su, M.Y., Chang, J.Y., Fung, K.T.: Android malware detection approaches in combination with static and dynamic features. IJ Network Secur. 21(6), 1031–1041 (2019)
Sagar, R., Jhaveri, R., Borrego, C.: Applications in security and evasions in machine learning: a survey. Electronics 9(1), 97 (2020)
Yusof, R., Adnan, N.S., Jalil, N.A., Abdullah, R.S.: Analysis of data mining tools for android malware detection. JACTA 1(2), 22–26 (2019)
Christiana, A., Gyunka, B., Noah, A.: Android Malware Detection through Machine Learning Techniques: A Review (2020)
Kouliaridis, V., Barmpatsalou, K., Kambourakis, G., Chen, S.: A survey on mobile malware detection techniques. IEICE Trans. Inf. Syst. 103(2), 204–211 (2020)
Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., Zheng, Q.: IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture. Comput. Netw. 171, 107138 (2020)
Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of Android malware detection approaches based on machine learning. IEEE Access 8, 124579–124607 (2020)
Yunus, Y.K.B.M., Ngah, S.B.: Review of hybrid analysis technique for malware detection. In: IOP Conference Series: Materials Science and Engineering, vol. 769, no. 1, p. 012075. IOP Publishing (2020)
Talukder, S., Talukder, Z.: A survey on malware detection and analysis tools. Int. J. Network Secur. Appl. 12(2) (2020)
Aslan, Ö.A., Samet, R.: A comprehensive review on malware detection approaches. IEEE Access 8, 6249–6271 (2020)
Pan, Y., Ge, X., Fang, C., Fan, Y.: A systematic literature review of android malware detection using static analysis. IEEE Access 8, 116363–116379 (2020)
Alswaina, F., Elleithy, K.: Android malware family classification and analysis: current status and future directions. Electronics 9(6), 942 (2020)
Alqahtani, E.J., Zagrouba, R., Almuhaideb, A.: A survey on android malware detection techniques using machine learning algorithms. In: 2019 Sixth International Conference on Software Defined Systems (SDS), pp. 110–117. IEEE (2019)
Sikder, R., Khan, S., Hossain, S., Khan, W.Z.: A survey on android security: development and deployment hindrance and best practices. Telkomnika 18(1), 485–499 (2020)
Kumar, R., Alazab, M.: Android Malware Detection Techniques (No. 3707). EasyChair (2020)
Salem, A.: Towards Accurate Labeling of Android Apps for Reliable Malware Detection. arXiv preprint arXiv:2007.00464 (2020)
Selvaraj, P.A., Jagadeesan, M., Sankari, R.G.: Risk score combined malware prediction using machine learning approach. Int. J. Appl. Eng. Res. 15(4), 422–424 (2020)
Huang, J., Huang, W., Miao, F., Xiong, Y.: Detecting improper behaviors of stubbornly requesting permissions in Android applications. IJ Network Security 22(3), 381–391 (2020)
Abdullah, T.A., Ali, W., Abdulghafor, R.: Empirical Study on Intelligent Android Malware Detection based on Supervised Machine Learning (2020)
Berger, H., Hajaj, C., Dvir, A.: When the Guard failed the Droid: a case study of Android malware. arXiv preprint arXiv:2003.14123 (2020)
Shar, L.K., Demissie, B.F., Ceccato, M., Minn, W.: Experimental comparison of features and classifiers for Android malware detection. In: Proceedings of the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems, pp. 50–60 (2020)
Sinha, A., Di Troia, F., Heller, P., Stamp, M.: Emulation versus instrumentation for Android malware detection. In: Digital Forensic Investigation of Internet of Things (IoT) Devices, pp. 1–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-60425-7_1
Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark android malware datasets and classification. In: 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1–7. IEEE (2018)
Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: Emulator vs real phone: Android malware detection using machine learning. In: Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics, pp. 65–72 (2017)
Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DynaLog: An automated dynamic analysis framework for characterizing android applications. In: 2016 International Conference on Cyber Security and Protection Of Digital Services (Cyber Security), pp. 1–8. IEEE (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Dave, D.D., Rathod, D. (2022). Systematic Review on Various Techniques of Android Malware Detection. In: Chaubey, N., Thampi, S.M., Jhanjhi, N.Z. (eds) Computing Science, Communication and Security. COMS2 2022. Communications in Computer and Information Science, vol 1604. Springer, Cham. https://doi.org/10.1007/978-3-031-10551-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-10551-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-10550-0
Online ISBN: 978-3-031-10551-7
eBook Packages: Computer ScienceComputer Science (R0)