Nothing Special   »   [go: up one dir, main page]

Skip to main content

Systematic Review on Various Techniques of Android Malware Detection

  • Conference paper
  • First Online:
Computing Science, Communication and Security (COMS2 2022)

Abstract

Smartphone has become the 4th basic necessity of human being after Food, Cloths and Home. It has become an integral part of the life that most of the business and office work can be operated by mobile phone and the demand for online classes demand for all class of students have become a compulsion without any alternate due to the COVID-19 pandemic. Android is considered as the most prevailing and used operating system for the mobile phone on this planet and for the same reason it is the most targeted mobile operating system by the hackers. Android malware has been increasing every quarter and every year. An android malware is installed and executed on the smartphones quietly without any indication and user’s acceptance, that possess threats to the consumer’s personal and/or classified information stored. To address these threats, varieties of techniques have been proposed by the researchers like Static, Dynamic and Hybrid. In this paper a systematic review has been carried out on the relevant studies from 2017 to 2020. Assessment of the malware detection capabilities of various techniques used by different researchers has been carried out with comparison of the performance of different machine learning models for the detection of android malwares by assessing the results of empirical evidences such as datasets, features, tools, etc. However the android malware detection still faces several challenges and the possible solution with some novel approach or technique to improve the detection capabilities is discussed in the discussion and conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. StatCounter Global Stats - https://gs.statcounter.com/os-market-share

  2. Nokia Threat Intelligence Report 2020

    Google Scholar 

  3. Nokia Threat Intelligence Report 2019

    Google Scholar 

  4. Statista - https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

  5. Kaspersky Team: Malicious Android app had more than 100 million downloads in Google Play – Kaspersky (2019)

    Google Scholar 

  6. Ravie, L.: Joker Malware Apps Once Again Bypass Google's Security to Spread via Play Store – The Hacker News (2020)

    Google Scholar 

  7. Ravie, L.: Watch Out—Microsoft Warns Android Users About A New Ransomware – The Hacker News (2020)

    Google Scholar 

  8. Mohit K., Judy Android Malware Infects Over 36.5 Million Google Play Store Users – The Hacker News, May 2017

    Google Scholar 

  9. Swati, K.: Mysterious malware that re-installs itself infected over 45,000 Android Phones – The Hacker News (2019)

    Google Scholar 

  10. Xiao, X., Xiao, X., Jiang, Y., Li, Q.: Detecting mobile malware with TMSVM. In: Tian, J., Jing, J., Srivatsa, M. (eds.) International Conference on Security and Privacy in Communication Networks, LNICST, vol. 15, pp. 507–516. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-23829-6_35

  11. Mercaldo, F., Santone, A.: Deep learning for image-based mobile malware detection. J. Comput. Virol. Hack. Tech. 16(2), 157–171 (2020). https://doi.org/10.1007/s11416-019-00346-7

    Article  Google Scholar 

  12. Afifi, F., Anuar, N. B., Shamshirband, S., Choo, K.K.R.: DyHAP: Dynamic hybrid ANFIS-PSO approach for predicting mobile malware. PloS one 11(9) (2016)

    Google Scholar 

  13. Chen, Z., et al.: Machine learning based mobile malware detection using highly imbalanced network traffic. Inf. Sci. 433, 346–364 (2018)

    Article  Google Scholar 

  14. Jang, J.-W., Yun, J., Mohaisen, A., Woo, J., Kim, H.K.: Detecting and classifying method based on similarity matching of Android malware behavior with profile. Springerplus 5(1), 1–23 (2016). https://doi.org/10.1186/s40064-016-1861-x

    Article  Google Scholar 

  15. Karim, A., Salleh, R., Khan, M.K.: SMARTbot: a behavioral analysis framework augmented with machine learning to identify mobile botnet applications. PloS one, 11(3) (2016)

    Google Scholar 

  16. Khoda, M.E., Kamruzzaman, J., Gondal, I., Imam, T., Rahman, A.: Mobile malware detection: an analysis of deep learning model. In: 2019 IEEE International Conference on Industrial Technology (ICIT), pp. 1161–1166. IEEE (2019)

    Google Scholar 

  17. Narudin, F.A., Feizollah, A., Anuar, N.B., Gani, A.: Evaluation of machine learning classifiers for mobile malware detection. Soft. Comput. 20(1), 343–357 (2014). https://doi.org/10.1007/s00500-014-1511-6

    Article  Google Scholar 

  18. Qamar, A., Karim, A., Chang, V.: Mobile malware attacks: Review, taxonomy & future directions. Futur. Gener. Comput. Syst. 97, 887–909 (2019)

    Article  Google Scholar 

  19. Wang, C., Wu, Z., Li, X., Zhou, X., Wang, A., Hung, P.C.: SmartMal: a service-oriented behavioral malware detection framework for mobile devices. Sci. World J. 2014, 1–11 (2014)

    Google Scholar 

  20. Wang, X., Yang, Y., Zeng, Y.: Accurate mobile malware detection and classification in the cloud. Springerplus 4(1), 1–23 (2015). https://doi.org/10.1186/s40064-015-1356-1

    Article  Google Scholar 

  21. Karumudi, B.R., Chandrasekaran, S., Armour, B., Alsmadi, I.: Malware Prediction and Classification Using Advanced Modeling Techniques (2017)

    Google Scholar 

  22. Yan, P., Yan, Z.: A survey on dynamic mobile malware detection. Software Qual. J. 26(3), 891–919 (2017). https://doi.org/10.1007/s11219-017-9368-4

    Article  Google Scholar 

  23. Swetha, K., Kiran, K.V.D.: Survey on mobile malware analysis and detection. Int. J. Eng. Technol 7(2.32), 279–282 (2018)

    Google Scholar 

  24. Gyamfi, N.K., Owusu, E.: Survey of mobile malware analysis, detection techniques and tool. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1101–1107. IEEE (2018)

    Google Scholar 

  25. Salah, A., Shalabi, E., Khedr, W.: A lightweight android malware classifier using novel feature selection methods. Symmetry 12(5), 858 (2020)

    Article  Google Scholar 

  26. Alazab, M.: Automated malware detection in mobile app stores based on robust feature generation. Electronics 9(3), 435 (2020)

    Article  Google Scholar 

  27. Roy, A., Jas, D.S., Jaggi, G., Sharma, K.: Android malware detection based on vulnerable feature aggregation. Procedia Comput. Sci. 173, 345–353 (2020)

    Article  Google Scholar 

  28. Wu, B., et al.: Why an Android App is Classified as Malware? Towards Malware Classification Interpretation. arXiv preprint arXiv:2004.11516 (2020)

  29. Deepa, K., Radhamani, G., Vinod, P.: Investigation of feature selection methods for android malware analysis. Procedia Comput. Sci. 46, 841–848 (2017)

    Article  Google Scholar 

  30. Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z., Conti, M.: Similarity-based Android malware detection using Hamming distance of static binary features. Futur. Gener. Comput. Syst. 105, 230–247 (2020)

    Article  Google Scholar 

  31. Almin, S.B., Chatterjee, M.: A novel approach to detect android malware. Procedia Comput. Sci. 45, 407–417 (2015)

    Article  Google Scholar 

  32. Nellaivadivelu, G., Di Troia, F., Stamp, M.: Black box analysis of android malware detectors. Array 6, 100022 (2020)

    Article  Google Scholar 

  33. Christianah, A., Gyunka, B., Oluwatobi, A.: Optimizing Android Malware Detection Via Ensemble Learning (2020)

    Google Scholar 

  34. Rathore, H., Sahay, S.K., Chaturvedi, P., Sewak, M.:, December). Android malicious application classification using clustering. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds.) International Conference on Intelligent Systems Design and Applications, AISC, vol. 941, pp. 659–667. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_64

  35. Ali, W.: Hybrid intelligent Android malware detection using evolving support vector machine based on genetic algorithm and particle swarm optimization. IJCSNS 19(9), 15 (2019)

    Google Scholar 

  36. Egitmen, A., Bulut, I., Aygun, R., Gunduz, A.B., Seyrekbasan, O., Yavuz, A.G.: Combat mobile evasive malware via skip-gram-based malware detection. Security and Communication Networks (2020)

    Google Scholar 

  37. Niu, W., Cao, R., Zhang, X., Ding, K., Zhang, K., Li, T.: OpCode-level function call graph based android malware classification using deep learning. Sensors 20(13), 3645 (2020)

    Article  Google Scholar 

  38. Islam, T., Rahman, S.S.M.M., Hasan, M.A., Rahaman, A.S.M.M., Jabiullah, M.I.: Evaluation of N-gram based multi-layer approach to detect malware in Android. Procedia Comput. Sci. 171, 1074–1082 (2020)

    Article  Google Scholar 

  39. Wang, J., Jing, Q., Gao, J., Qiu, X.: SEdroid: a robust Android malware detector using selective ensemble learning. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–5. IEEE (2020)

    Google Scholar 

  40. Ma, Z., Ge, H., Wang, Z., Liu, Y., Liu, X.: Droidetec: Android malware detection and malicious code localization through deep learning. arXiv preprint arXiv:2002.03594 (2020)

  41. Dillon, K.: Feature-level Malware Obfuscation in Deep Learning. arXiv preprint arXiv:2002.05517 (2020)

  42. Akram, J., Shi, Z., Mumtaz, M., Luo, P.: DroidSD: An efficient indexed based android applications similarity detection tool. J. Inf. Sci. Eng. 36(1) (2020)

    Google Scholar 

  43. Koli, J.D.: RanDroid: Android malware detection using random machine learning classifiers. In: 2018 Technologies for Smart-City Energy Security and Power (ICSESP), pp. 1–6. IEEE (2018)

    Google Scholar 

  44. Massarelli, L., Aniello, L., Ciccotelli, C., Querzoni, L., Ucci, D., Baldoni, R.: AndroDFA: Android malware classification based on resource consumption. Information 11(6), 326 (2020)

    Article  Google Scholar 

  45. Abderrahmane, A., Adnane, G., Yacine, C., Khireddine, G.: Android malware detection based on system calls analysis and CNN classification. In: 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW), pp. 1–6. IEEE (2019)

    Google Scholar 

  46. He, G., Xu, B., Zhang, L., Zhu, H.: On-Device Detection of Repackaged Android Malware via Traffic Clustering. Security and Communication Networks (2020)

    Google Scholar 

  47. Wang, S., et al.: Deep and broad URL feature mining for android malware detection. Inf. Sci. 513, 600–613 (2020)

    Article  Google Scholar 

  48. Takawale, H.C., Thakur, A.: Talos app: on-device machine learning using tensorflow to detect android malware. In: 2018 Fifth International Conference on Internet of Things: Systems, Management and Security, pp. 250–255. IEEE (2018)

    Google Scholar 

  49. Martín, A., Rodríguez-Fernández, V., Camacho, D.: CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains. Eng. Appl. Artif. Intell. 74, 121–133 (2018)

    Article  Google Scholar 

  50. Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., Awajan, A.: Intelligent mobile malware detection using permission requests and API calls. Futur. Gener. Comput. Syst. 107, 509–521 (2020)

    Article  Google Scholar 

  51. Su, X., Xiao, L., Li, W., Liu, X., Li, K.C., Liang, W.: DroidPortrait: Android malware portrait construction based on multidimensional behavior analysis. Appl. Sci. 10(11), 3978 (2020)

    Article  Google Scholar 

  52. Bhatia, T., Kaushal, R.: Malware detection in android based on dynamic analysis. In: 2017 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), pp. 1–6. IEEE (2017)

    Google Scholar 

  53. Cai, H., Fu, X., Hamou-Lhadj, A.: A study of run-time behavioral evolution of benign versus malicious apps in android. Inf. Softw. Technol. 122, 106291 (2020)

    Article  Google Scholar 

  54. Thangavelooa, R., Jinga, W.W., Lenga, C.K., Abdullaha, J.: DATDroid: dynamic analysis technique in Android malware detection. Int. J. Adv. Sci. Eng. Inf. Technol. 10(2), 536–541 (2020)

    Article  Google Scholar 

  55. Mahindru, A., Singh, P.: Dynamic permissions based android malware detection using machine learning techniques. In: Proceedings of the 10th Innovations in Software Engineering Conference, pp. 202–210 (2017)

    Google Scholar 

  56. Kim, D.W., Na, K.G., Han, M.M., Kim, M., Go, W., Park, J.H.: Malware application classification based on feature extraction and machine learning for malicious behavior analysis in Android platform. J. Internet Comput. Serv. 19(1), 27–35 (2018)

    Google Scholar 

  57. Wang, X., Li, C.: KerTSDroid: detecting android malware at scale through kernel task structures. In: 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), pp. 870–879. IEEE (2019)

    Google Scholar 

  58. Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: Samadroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access 6, 4321–4339 (2018)

    Article  Google Scholar 

  59. Zhang, Y., et al.: Familial clustering for weakly-labeled android malware using hybrid representation learning. IEEE Trans. Inf. Forensics Secur. 15, 3401–3414 (2019)

    Article  Google Scholar 

  60. Patel, K., Buddadev, B.: Detection and mitigation of android malware through hybrid approach. In: Abawajy, J., Mukherjea, S., Thampi, S., Ruiz-Martínez, A. (eds.) International Symposium on Security in Computing and Communication, CCIS, vol. 536, pp. 455–463. Springer, Cham. https://doi.org/10.1007/978-3-319-22915-7_41

  61. Martín, A., Lara-Cabrera, R., Camacho, D.: Android malware detection through hybrid features fusion and ensemble classifiers: the AndroPyTool framework and the OmniDroid dataset. Inf. Fus. 52, 128–142 (2019)

    Article  Google Scholar 

  62. Jannat, U.S., Hasnayeen, S.M., Shuhan, M.K.B., Ferdous, M.S.: Analysis and detection of malware in Android applications using machine learning. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–7. IEEE (2019

    Google Scholar 

  63. Surendran, R., Thomas, T., Emmanuel, S.: A TAN based hybrid model for android malware detection. J. Inf. Secur. Appl. 54, 102483 (2020)

    Google Scholar 

  64. Demertzis, K., Iliadis, L.: Bio-inspired hybrid intelligent method for detecting android malware. In: Kunifuji, S., Papadopoulos, G., Skulimowski, A., Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems, AISC, Vol. 416, pp. 289–304. Springer, Cham. https://doi.org/10.1007/978-3-319-27478-2_20

  65. Vinayakumar, R., Soman, K.P., Poornachandran, P., Sachin Kumar, S.: Detecting Android malware using long short-term memory (LSTM). J. Intell. Fuzzy Syst. 34(3), 1277–1288 (2018)

    Article  Google Scholar 

  66. Kouliaridis, V., Kambourakis, G., Geneiatakis, D., Potha, N.: Two anatomists are better than one—dual-level Android malware detection. Symmetry 12(7), 1128 (2020)

    Article  Google Scholar 

  67. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DL-Droid: Deep learning based android malware detection using real devices. Comput. Secur. 89, 101663 (2020)

    Article  Google Scholar 

  68. Kato, H., Haruta, S., Sasase, I.: Android malware detection scheme based on level of SSL server certificate. IEICE Trans. Inf. Syst. 103(2), 379–389 (2020)

    Article  Google Scholar 

  69. Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in Android. J. Parallel Distrib. Comput. 103, 22–31 (2017)

    Article  Google Scholar 

  70. Kabakus, A.T., Dogru, I.A.: An in-depth analysis of Android malware using hybrid techniques. Digit. Investig. 24, 25–33 (2018)

    Article  Google Scholar 

  71. Gong, L., et al.: Experiences of landing machine learning onto market-scale mobile malware detection. In: Proceedings of the Fifteenth European Conference on Computer Systems, pp. 1–14 (2020)

    Google Scholar 

  72. Su, M.Y., Chang, J.Y., Fung, K.T.: Android malware detection approaches in combination with static and dynamic features. IJ Network Secur. 21(6), 1031–1041 (2019)

    Google Scholar 

  73. Sagar, R., Jhaveri, R., Borrego, C.: Applications in security and evasions in machine learning: a survey. Electronics 9(1), 97 (2020)

    Article  Google Scholar 

  74. Yusof, R., Adnan, N.S., Jalil, N.A., Abdullah, R.S.: Analysis of data mining tools for android malware detection. JACTA 1(2), 22–26 (2019)

    Google Scholar 

  75. Christiana, A., Gyunka, B., Noah, A.: Android Malware Detection through Machine Learning Techniques: A Review (2020)

    Google Scholar 

  76. Kouliaridis, V., Barmpatsalou, K., Kambourakis, G., Chen, S.: A survey on mobile malware detection techniques. IEICE Trans. Inf. Syst. 103(2), 204–211 (2020)

    Article  Google Scholar 

  77. Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., Zheng, Q.: IMCFN: image-based malware classification using fine-tuned convolutional neural network architecture. Comput. Netw. 171, 107138 (2020)

    Article  Google Scholar 

  78. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of Android malware detection approaches based on machine learning. IEEE Access 8, 124579–124607 (2020)

    Article  Google Scholar 

  79. Yunus, Y.K.B.M., Ngah, S.B.: Review of hybrid analysis technique for malware detection. In: IOP Conference Series: Materials Science and Engineering, vol. 769, no. 1, p. 012075. IOP Publishing (2020)

    Google Scholar 

  80. Talukder, S., Talukder, Z.: A survey on malware detection and analysis tools. Int. J. Network Secur. Appl. 12(2) (2020)

    Google Scholar 

  81. Aslan, Ö.A., Samet, R.: A comprehensive review on malware detection approaches. IEEE Access 8, 6249–6271 (2020)

    Article  Google Scholar 

  82. Pan, Y., Ge, X., Fang, C., Fan, Y.: A systematic literature review of android malware detection using static analysis. IEEE Access 8, 116363–116379 (2020)

    Article  Google Scholar 

  83. Alswaina, F., Elleithy, K.: Android malware family classification and analysis: current status and future directions. Electronics 9(6), 942 (2020)

    Article  Google Scholar 

  84. Alqahtani, E.J., Zagrouba, R., Almuhaideb, A.: A survey on android malware detection techniques using machine learning algorithms. In: 2019 Sixth International Conference on Software Defined Systems (SDS), pp. 110–117. IEEE (2019)

    Google Scholar 

  85. Sikder, R., Khan, S., Hossain, S., Khan, W.Z.: A survey on android security: development and deployment hindrance and best practices. Telkomnika 18(1), 485–499 (2020)

    Article  Google Scholar 

  86. Kumar, R., Alazab, M.: Android Malware Detection Techniques (No. 3707). EasyChair (2020)

    Google Scholar 

  87. Salem, A.: Towards Accurate Labeling of Android Apps for Reliable Malware Detection. arXiv preprint arXiv:2007.00464 (2020)

  88. Selvaraj, P.A., Jagadeesan, M., Sankari, R.G.: Risk score combined malware prediction using machine learning approach. Int. J. Appl. Eng. Res. 15(4), 422–424 (2020)

    Google Scholar 

  89. Huang, J., Huang, W., Miao, F., Xiong, Y.: Detecting improper behaviors of stubbornly requesting permissions in Android applications. IJ Network Security 22(3), 381–391 (2020)

    Google Scholar 

  90. Abdullah, T.A., Ali, W., Abdulghafor, R.: Empirical Study on Intelligent Android Malware Detection based on Supervised Machine Learning (2020)

    Google Scholar 

  91. Berger, H., Hajaj, C., Dvir, A.: When the Guard failed the Droid: a case study of Android malware. arXiv preprint arXiv:2003.14123 (2020)

  92. Shar, L.K., Demissie, B.F., Ceccato, M., Minn, W.: Experimental comparison of features and classifiers for Android malware detection. In: Proceedings of the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems, pp. 50–60 (2020)

    Google Scholar 

  93. Sinha, A., Di Troia, F., Heller, P., Stamp, M.: Emulation versus instrumentation for Android malware detection. In: Digital Forensic Investigation of Internet of Things (IoT) Devices, pp. 1–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-60425-7_1

  94. Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark android malware datasets and classification. In: 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1–7. IEEE (2018)

    Google Scholar 

  95. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: Emulator vs real phone: Android malware detection using machine learning. In: Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics, pp. 65–72 (2017)

    Google Scholar 

  96. Alzaylaee, M.K., Yerima, S.Y., Sezer, S.: DynaLog: An automated dynamic analysis framework for characterizing android applications. In: 2016 International Conference on Cyber Security and Protection Of Digital Services (Cyber Security), pp. 1–8. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmesh D. Dave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dave, D.D., Rathod, D. (2022). Systematic Review on Various Techniques of Android Malware Detection. In: Chaubey, N., Thampi, S.M., Jhanjhi, N.Z. (eds) Computing Science, Communication and Security. COMS2 2022. Communications in Computer and Information Science, vol 1604. Springer, Cham. https://doi.org/10.1007/978-3-031-10551-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10551-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10550-0

  • Online ISBN: 978-3-031-10551-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics