Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Web Service Quality Using Multi-criteria Decision-Making and Fuzzy Inference Methods

  • Conference paper
  • First Online:
Digital Business and Intelligent Systems (Baltic DB&IS 2022)

Abstract

Quality of service (QoS) is a concept that has been widely explored over the last decade to characterize Web Services (WS) from a non-functional perspective. However, QoS of WS is dynamic, different for each user, and complex by its nature; therefore, it is challenging to determine. Nevertheless, various authors have proposed different approaches for QoS finding. However, there is a gap in knowing how different QoS determining approaches affect QoS value and what is the relationship between the obtained QoS values. This paper presents the QoS value finding and analysis approach, which allows us to investigate the relationship between the applied methods and evaluate the correlation of results. The experiments were conducted by applying a fuzzy control system (FCS) and multi-criteria decision-making methods TOPSIS and WASPAS to determine QoS values and find the relationship between the obtained QoS values. The obtained results show that there is a strong positive linear relationship between QoS values obtained by WASPAS and TOPSIS, WASPAS and FCS, a very strong positive linear relationship between TOPSIS and FCS, and a very strong monotonic relationship between WASPAS and TOPSIS, WASPAS and FCS, and TOPSIS and FCS. Consequently, the three analysed QoS determining approaches can be successfully applied as alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghafouri, H., Hashemi, M., Hung, P.C.K.: A survey on web service QoS prediction methods. IEEE Trans. Serv. Comput. (2020). https://doi.org/10.1109/TSC.2020.2980793n

  2. Masdari, M., Khezri, H.: Service selection using fuzzy multi-criteria decision making: a comprehensive review. J. Ambient. Intell. Humaniz. Comput. 12(2), 2803–2834 (2020). https://doi.org/10.1007/s12652-020-02441-w

    Article  Google Scholar 

  3. Hosseinzadeh, M., Hama, H.K., Ghafour, M.Y., Masdari, M., Ahmed, O.H., Khezri, H.: Service selection using multi-criteria decision making: a comprehensive overview. J. Netw. Syst. Manage. 28(4), 1639–1693 (2020). https://doi.org/10.1007/s10922-020-09553-w

    Article  Google Scholar 

  4. Miliauskaitė, J.: Some methodological issues related to preliminary QoS planning in enterprise systems. Balt. J. Mod. Comput. 3, 149–163 (2015)

    Google Scholar 

  5. Yaghoubi, M., Maroosi, A.: Simulation and modeling of an improved multi-verse optimization algorithm for QoS-aware web service composition with service level agreements in the cloud environments. Simul. Model. Pract. Theory. 103, 102090 (2020). https://doi.org/10.1016/j.simpat.2020.102090

    Article  Google Scholar 

  6. Chen, L., Ha, W.: Reliability prediction and QoS selection for web service composition. Int. J. Comput. Sci. Eng. 16, 202–211 (2018). https://doi.org/10.1504/IJCSE.2018.090442

  7. Chattopadhyay, S., Banerjee, A.: QoS-aware automatic web service composition with multiple objectives. ACM Trans. Web. 14, 1–38 (2020). https://doi.org/10.1145/3389147

    Article  Google Scholar 

  8. Adarme, M., Jimeno, M.: Qos-based pattern recognition approach for web service discovery: Ar_wsds. Appl. Sci. 11, 8092 (2021). https://doi.org/10.3390/app11178092

    Article  Google Scholar 

  9. Chang, Z., Ding, D., Xia, Y.: A graph-based QoS prediction approach for web service recommendation. Appl. Intell. 51(10), 6728–6742 (2021). https://doi.org/10.1007/s10489-020-02120-5

    Article  Google Scholar 

  10. Dang, D., Chen, C., Li, H., Yan, R., Guo, Z., Wang, X.: Deep knowledge-aware framework for web service recommendation. J. Supercomput. 77(12), 14280–14304 (2021). https://doi.org/10.1007/s11227-021-03832-2

    Article  Google Scholar 

  11. Xiong, R., Wang, J., Zhang, N., Ma, Y.: Deep hybrid collaborative filtering for Web service recommendation. Expert Syst. Appl. 110, 191–205 (2018). https://doi.org/10.1016/j.eswa.2018.05.039

    Article  Google Scholar 

  12. Hasan, M.H., Jaafar, J., Watada, J., Hassan, M.F., Aziz, I.A.: An interval type-2 fuzzy model of compliance monitoring for quality of web service. Ann. Oper. Res. 300(2), 415–441 (2019). https://doi.org/10.1007/s10479-019-03328-6

    Article  MathSciNet  Google Scholar 

  13. Ghafouri, S.H., Hashemi, S.M., Razzazi, M.R., Movaghar, A.: Web service quality of service prediction via regional reputation-based matrix factorization. Concurr. Comput. Pract. Exp. 33 (2021). https://doi.org/10.1002/cpe.6318

  14. Wang, M., Liu, B., Li, J., Li, Y., Chen, H., Zhou, Z., Zhang, W.: A location-based approach for web service QoS prediction via multivariate time series forecast. In: Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, pp. 36–39 (2020). https://doi.org/10.1109/ICSESS49938.2020.9237713

  15. Kalibatiene, D., Miliauskaitė, J.: A hybrid systematic review approach on complexity issues in data-driven fuzzy inference systems development. Informatics 32, 85–118 (2021). https://doi.org/10.15388/21-INFOR444

  16. Takagi, T., Sugeno, M.: Fuzzy Identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985). https://doi.org/10.1109/TSMC.1985.6313399

  17. Jatoth, C., Gangadharan, G.R., Fiore, U., Buyya, R.: SELCLOUD: a hybrid multi-criteria decision-making model for selection of cloud services. Soft. Comput. 23(13), 4701–4715 (2018). https://doi.org/10.1007/s00500-018-3120-2

    Article  Google Scholar 

  18. Wang, S., Sun, Q., Zou, H., Yang, F.: Particle swarm optimization with Skyline operator for fast cloud-based web service composition. Mob. Netw. Appl. 18, 116–121 (2013). https://doi.org/10.1007/s11036-012-0373-3

    Article  Google Scholar 

  19. Xu, J., et al.: Towards fuzzy QoS driven service selection with user requirements. In: Proceedings of 2017 International Conference on Progress in Informatics and Computing, PIC 2017. pp. 230–234 (2017). https://doi.org/10.1109/PIC.2017.8359548

  20. Ghobaei-Arani, M., Souri, A.: LP-WSC: a linear programming approach for web service composition in geographically distributed cloud environments. J. Supercomput. 75(5), 2603–2628 (2018). https://doi.org/10.1007/s11227-018-2656-3

    Article  Google Scholar 

  21. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. John Wiley & Sons, New York (1976)

    MATH  Google Scholar 

  22. Triantaphyllou, E.: Multi-criteria Decision Making Methods. Springer, Boston (2000). https://doi.org/10.1007/978-1-4757-3157-6_2

  23. Kumar, A., et al.: A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 69, 596-609 (2017). https://doi.org/10.1016/j.rser.2016.11.191

  24. Yazdani, M., Graeml, F.R.: VIKOR and its applications. Int. J. Strateg. Decis. Sci. 5, 56–83 (2014). https://doi.org/10.4018/ijsds.2014040105

    Article  Google Scholar 

  25. Hwang, C.-L., Yoon, K.: Methods for Multiple Attribute Decision Making. Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-48318-9_3

  26. Triantaphyllou, E.: Multi-criteria Decision Making Methods: A Comparative Study. Springer, Boston (2000). https://doi.org/10.1007/978-1-4757-3157-6

  27. Vafaei, N., Ribeiro, R.A., Camarinha-Matos, L.M.: Data normalisation techniques in decision making: case study with TOPSIS method. Int. J. Inf. Decis. Sci. 10(1), 19 (2018). https://doi.org/10.1504/IJIDS.2018.090667

  28. Ghorabaee, M.K., Zavadskas, E.K., Olfat, L., Turskis, Z.: Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatics 26, 435–451 (2015). https://doi.org/10.15388/Informatica.2015.57

  29. Roy, J., Sharma, H.K., Kar, S., Zavadskas, E.K., Saparauskas, J.: An extended COPRAS model for multi-criteria decision-making problems and its application in web-based hotel evaluation and selection. Econ. Res. Istraz. 32, 219–253 (2019). https://doi.org/10.1080/1331677X.2018.1543054

    Article  Google Scholar 

  30. Alinezhad, A., Khalili, J.: COPRAS method. In: New Methods and Applications in Multiple Attribute Decision Making (MADM). ISORMS, vol. 277, pp. 87–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15009-9_12

    Chapter  MATH  Google Scholar 

  31. Bottani, E., Rizzi, A.: A fuzzy TOPSIS methodology to support outsourcing of logistics services. Supply Chain Manag. 11, 294–308 (2006). https://doi.org/10.1108/13598540610671743

    Article  Google Scholar 

  32. Nădăban, S., Dzitac, S., Dzitac, I.: Fuzzy TOPSIS: a general view. Procedia Comput. Sci. 91, 823–831 (2016)

    Article  Google Scholar 

  33. Junior, F.R.L., Hsiao, M.: A hesitant fuzzy topsis model to supplier performance evaluation. DYNA 88, 126–135 (2021). https://doi.org/10.15446/DYNA.V88N216.88320

  34. Feng, Y., et al.: A novel hybrid fuzzy grey TOPSIS method: supplier evaluation of a collaborative manufacturing enterprise. Appl. Sci. 9 (2019). https://doi.org/10.3390/app9183770

  35. Chakraborty, S., Zavadskas, E.K., Antucheviciene, J.: Applications of WASPAS method as a multi-criteria decision-making tool. Econ. Comput. Econ. Cybern. Stud. Res. 49, 5–22 (2015)

    Google Scholar 

  36. Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., Turskis, Z.: A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 57, 2501–2519 (2019). https://doi.org/10.1108/MD-05-2017-0458

    Article  Google Scholar 

  37. Pandharbale, P.B., Mohanty, S.N., Jagadev, A.K.: Recent web service recommendation methods: a review. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.01.783

    Article  Google Scholar 

  38. Polska, O., Kudermetov, R., Shkarupylo, V.: The approach for QoS based web service selection with user’s preferences. Probl. Model. Des. Autom. 19–27 (2020). https://doi.org/10.31474/2074-7888-2020-2-19-27

  39. Polska, O., Kudermetov, R., Shkarupylo, V.: Model of web services quality criteria hierarchy. Visnyk Zaporizhzhya Natl. Univ. Phys. Math. Sci. 2, 43–51 (2021). https://doi.org/10.26661/2413-6549-2020-2-06

  40. Miliauskaitė, J.: The membership function construction in view-based framework. In: Haav, H.-M., Kalja, A., Robal, T. (eds.) 11th International Baltic Conference on Database and Information Systems (Baltic DB&IS 2014), pp. 125–132. Tallinn University of Technology Press, Tallinn (2014)

    Google Scholar 

  41. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121, 1585–1588 (1974). https://doi.org/10.1049/piee.1974.0328

    Article  Google Scholar 

  42. Zavadskas, E.K., Turskis, Z., Antucheviciene, J., Zakarevicius, A.: Optimization of weighted aggregated sum product assessment. Elektron. ir Elektrotechnika. 122, 3–6 (2012). https://doi.org/10.5755/j01.eee.122.6.1810

    Article  Google Scholar 

  43. Hwang, C.-L., Yoon, K.: Methods for multiple attribute decision making. In: Multiple Attribute Decision Making. LNEMS, vol. 186. pp. 58–191. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-48318-9_3

  44. Cleff, T.: Exploratory Data Analysis in Business and Economics. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01517-0

  45. Al-Masri, E.: QWS Dataset. https://qwsdata.github.io/. Accessed 24 Feb 2022

  46. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: Proceeding of the 17th International Conference on World Wide Web 2008, WWW 2008, pp. 795–804 (2008). https://doi.org/10.1145/1367497.1367605

  47. Daoud, J.I.: Multicollinearity and regression analysis. IOP Conf. Ser. J. Phys. 949(1), 1–6. (2017). https://doi.org/10.1088/1742-6596/949/1/012009

  48. Ouadah, A., Benouaret, K., Hadjali, A., Nader, F.: SkyAP-S3: a hybrid approach for efficient skyline services selection. In: Proceedings - 2015 IEEE 8th International Conference on Service-Oriented Computing and Applications, SOCA 2015, pp. 18–25. IEEE (2016). https://doi.org/10.1109/SOCA.2015.22

  49. Sun, L., Ma, J., Zhang, Y., Dong, H., Hussain, F.K.: Cloud-FuSeR: fuzzy ontology and MCDM based cloud service selection. Futur. Gener. Comput. Syst. 57, 42–55 (2016). https://doi.org/10.1016/j.future.2015.11.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Kalibatienė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalibatienė, D., Miliauskaitė, J. (2022). On Web Service Quality Using Multi-criteria Decision-Making and Fuzzy Inference Methods. In: Ivanovic, M., Kirikova, M., Niedrite, L. (eds) Digital Business and Intelligent Systems. Baltic DB&IS 2022. Communications in Computer and Information Science, vol 1598. Springer, Cham. https://doi.org/10.1007/978-3-031-09850-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09850-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09849-9

  • Online ISBN: 978-3-031-09850-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics