Nothing Special   »   [go: up one dir, main page]

Skip to main content

Symmetric-Approximation Energy-Based Estimation of Distribution (SEED) Algorithm for Solving Continuous High-Dimensional Global Optimization Problems

  • Chapter
  • First Online:
New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics

Abstract

The Symmetric-approximation Energy-based Estimation of Distribution (SEED) is a continuous optimization algorithm based on the univariate Estimation of Distribution Algorithms (EDAs). Generally speaking, SEED uses Boltzmann selection and a symmetric divergence measure to guide the evolutionary process toward the optimum by constructing and sampling explicit probabilistic models of promising candidate solutions. SEED has been compared with other univariate EDAs, showing better results for low-dimensional continuous problems, and converging faster than the compared algorithms. In this paper, we propose to use SEED for solving continuous high-dimensional global optimization problems, and the results are compared with those of other representative evolutionary algorithms from the state-of-the-art such as Differential Evolution and Particle Swarm Optimization. To stress the algorithms, the search domain is extended from \(x\in {\left[-1000, 1000\right]}^{n}\) for several benchmark functions whose dimension ranges from 500 to 10,000. Finally, to know the best performing algorithm, the convergence results of all algorithms are statistically compared using the Page’s Trend Test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/LIDT-Lab/pySEED.

  2. 2.

    https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html.

  3. 3.

    https://pythonhosted.org/pyswarm/.

References

  1. Boyko, A.I., Oseledets, I.V., Ferrer, G.: TT-QI: faster value iteration in tensor train format for stochastic optimal control. Comput. Math. Math. Phys. 61(5), 836–846 (2021)

    Article  MathSciNet  Google Scholar 

  2. Calzada-Ledesma, V., Puga-Soberanes, H.J., Rojas-Domínguez, A., Ornelas-Rodríguez, M., Carpio-Valadez, J.M., Gómez-Santillán, C.G.: Comparing grammatical evolution’s mapping processes on feature generation for pattern recognition problems. In: Nature-Inspired Design of Hybrid Intelligent Systems, pp. 775–785. Springer, Cham (2017)

    Chapter  Google Scholar 

  3. Chen, S., Montgomery, J., Bolufé-Röhler, A.: Measuring the curse of dimensionality and its effects on particle swarm optimization and differential evolution. Appl. Intell. 42(3), 514–526 (2015)

    Article  Google Scholar 

  4. de Anda-Suárez, J., Carpio-Valadez, J.M., Puga-Soberanes, H.J., Calzada-Ledesma, V., Rojas-Domínguez, A., Jeyakumar, S., Espinal, A.: Symmetric-approximation energy-based estimation of distribution (SEED): a continuous optimization algorithm. IEEE Access 7, 154859–154871 (2019)

    Article  Google Scholar 

  5. Derrac, J., García, S., Hui, S., Suganthan, P.N., Herrera, F.: Analyzing convergence performance of evolutionary algorithms: a statistical approach. Inf. Sci. 289, 41–58 (2014)

    Article  Google Scholar 

  6. Fan, Q., Chen, Z., Li, Z., Xia, Z., Yu, J., Wang, D.: A new improved whale optimization algorithm with joint search mechanisms for high-dimensional global optimization problems. Eng. Comput. 37(3), 1851–1878 (2021)

    Article  Google Scholar 

  7. Feoktistov, V.: Differential Evolution, pp. 1-24. Springer, US (2006)

    Google Scholar 

  8. Gallagher, M., Frean, M.: Population-based continuous optimization, probabilistic modelling and mean shift. Evol. Comput. 13(1), 29–42 (2005)

    Article  Google Scholar 

  9. Gambella, C., Ghaddar, B., Naoum-Sawaya, J.: Optimization problems for machine learning: a survey. Eur. J. Oper. Res. 290(3), 807–828 (2021)

    Article  MathSciNet  Google Scholar 

  10. Greiner, W., Neise, L., Stöcker, H.: Thermodynamics and Statistical Mechanics. Springer Science & Business Media (2012)

    Google Scholar 

  11. Gu, Q., Wang, Q., Li, X., Li, X.: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems. Knowl.-Based Syst. 223, 107049 (2021)

    Article  Google Scholar 

  12. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 186(1007), 453–461 (1946)

    Google Scholar 

  13. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  14. Long, W., Wu, T., Liang, X., Xu, S.: Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst. Appl. 123, 108–126 (2019)

    Article  Google Scholar 

  15. MiarNaeimi, F., Azizyan, G., Rashki, M.: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems. Knowl.-Based Syst. 213, 106711 (2021)

    Article  Google Scholar 

  16. Mühlenbein, H.: The equation for response to selection and its use for prediction. Evol. Comput. 5(3), 303–346 (1997)

    Article  Google Scholar 

  17. Mullen, K.M.: Continuous global optimization in R. J. Stat. Softw. 60(1), 1–45 (2014)

    MathSciNet  Google Scholar 

  18. Pelikan, M., Hauschild, M.W., Lobo, F.G.: Estimation of distribution algorithms. In: Springer Handbook of Computational Intelligence, pp. 899–928. Springer, Berlin (2015)

    Google Scholar 

  19. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Google Scholar 

  20. Valdez, S.I., Hernández, A., Botello, S.: A Boltzmann based estimation of distribution algorithm. Inf. Sci. 236, 126–137 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Instituto Tecnológico Superior de Purísima del Rincón for the resources and support for the development of this research. We released SEED in a package called pySEED, available at the following link: https://github.com/LIDT-Lab/pySEED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentín Calzada-Ledesma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calzada-Ledesma, V., de Anda-Suárez, J., Ortiz-Aguilar, L., Villanueva-Jiménez, L.F., Trasviña-Osorio, R. (2022). Symmetric-Approximation Energy-Based Estimation of Distribution (SEED) Algorithm for Solving Continuous High-Dimensional Global Optimization Problems. In: Castillo, O., Melin, P. (eds) New Perspectives on Hybrid Intelligent System Design based on Fuzzy Logic, Neural Networks and Metaheuristics. Studies in Computational Intelligence, vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-031-08266-5_16

Download citation

Publish with us

Policies and ethics