Abstract
Most Multi-Objective Evolutionary Algorithms (MOEAs) face significant challenges in many-objective optimization. MOEAs have random elements in the selection and crossover operators which endow them with global convergence properties. The key contribution of this paper is to integrate discrete probability distributions instead of just randomization in the design of the algorithm. This allows us to use the Wasserstein distance to drive the selection operator, instead of the Euclidean distance. Achieving balance between convergence and diversity is a key issue in evolutionary multi-objective optimization. The use of the Wasserstein distance constitutes a novel approach to the diversity management mechanism. This approach can be applied to the two main strategies: Pareto sampling, as in NSGA-II, and decomposition, as in MOEA/D, resulting in new algorithms NSGA-II/W and MOEA/D/W. The performance of the proposed algorithms is validated on a number of unconstrained and constrained benchmark problems with up to 10 objectives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Z., Pei, Y., Li, J.: A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms. Appl. Sci. 13, 4643 (2023)
Zhou, H., Qiao, J.: Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D. Appl. Intell. 49, 1098–1126 (2019)
Konstantinidis, A., Charalambous, C., Zhou, A., Zhang, Q.: Multi-objective mobile agent-based sensor network routing using MOEA/D. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)
Murugeswari, R., Radhakrishnan, S., Devaraj, D.: A multi-objective evolutionary algorithm based QoS routing in wireless mesh networks. Appl. Soft Comput. 40, 517–525 (2016)
Zhang, Q., Li, H., Maringer, D., Tsang, E.: MOEA/D with NBI-style Tchebycheff approach for portfolio management. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)
Fu, G., Kapelan, Z., Kasprzyk, J.R., Reed, P.: Optimal design of water distribution systems using many-objective visual analytics. J. Water Resour. Plan. Manag. 139, 624–633 (2013)
Lygoe, R.J., Cary, M., Fleming, P.J.: A real-world application of a many-objective optimisation complexity reduction process. In: Evolutionary Multi-Criterion Optimization: 7th International Conference, EMO 2013, Sheffield, UK, March 19–22, 2013. Proceedings 7, pp. 641–655. Springer (2013)
Chikumbo, O., Goodman, E., Deb, K.: Approximating a multi-dimensional Pareto front for a land use management problem: A modified MOEA with an epigenetic silencing metaphor. In: 2012 IEEE congress on evolutionary computation, pp. 1–9. IEEE (2012)
Bacardit, J., Brownlee, A.E., Cagnoni, S., Iacca, G., McCall, J., Walker, D.: The intersection of evolutionary computation and explainable AI. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1757–1762 (2022)
Candelieri, A., Perego, R., Archetti, F.: Green machine learning via augmented Gaussian processes and multi-information source optimization. Soft Comput., 1–13 (2021)
Fadaee, M., Radzi, M.A.M.: Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renew. Sustain. Energy Rev. 16, 3364–3369 (2012)
Candelieri, A., Ponti, A., Giordani, I., Bosio, A., Archetti, F.: Distributional learning in multi-objective optimization of recommender systems. J. Ambient Intell. Human. Comput., 1–17 (2022)
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: 2008 IEEE Congress on Evolutionary Computation IEEE World Congress on Computational Intelligence, pp. 2419–2426. IEEE (2008)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). https://doi.org/10.1109/4235.996017
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. TIK-report 103, (2001)
Monge, G.: Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale Sci., 666–704 (1781)
Kantorovich, L.: On the transfer of masses. In: Doklady Akademii Nauk, pp. 227–229 (1942) (in Russian)
Villani, C.: Optimal transport: old and new. Springer Science & Business Media (2008)
Peyré, G., Cuturi, M.: Computational optimal transport. arXiv preprint arXiv:1803.00567 (2020)
Bonneel, N., Peyré, G., Cuturi, M.: Wasserstein Barycentric coordinates: histogram regression using optimal transport. ACM Trans. Graph. 35, 71–81 (2016)
Vayer, T., Chapel, L., Flamary, R., Tavenard, R., Courty, N.: Optimal Transport for structured data with application on graphs. arXiv preprint arXiv:1805.09114. (2018)
Huang, G., Quo, C., Kusner, M.J., Sun, Y., Weinberger, K.Q., Sha, F.: Supervised word mover’s distance. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 4869–4877 (2016)
Ponti, A., Candelieri, A., Archetti, F.: A Wasserstein distance based multiobjective evolutionary algorithm for the risk aware optimization of sensor placement. Intell. Syst. Appl. 10, (2021)
Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)
Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18, 114–130 (2013)
Sindhya, K., Miettinen, K., Deb, K.: A hybrid framework for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 17, 495–511 (2012)
Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18, 909–923 (2013)
Giagkiozis, I., Fleming, P.J.: Methods for multi-objective optimization: an analysis. Inf. Sci. 293, 338–350 (2015)
Li, H., Deb, K., Zhang, Q., Suganthan, P.N., Chen, L.: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties. Swarm Evol. Comput. 46, 104–117 (2019)
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19, 694–716 (2014)
Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-objective test problems to visually examine the behavior of multiobjective evolution in a decision space. In: Parallel Problem Solving from Nature, PPSN XI: 11th International Conference, Kraków, Poland, September 11–15, 2010, Proceedings, Part II 11, pp. 91–100. Springer (2010)
Ishibuchi, H., Akedo, N., Nojima, Y.: Relation between neighborhood size and MOEA/D performance on many-objective problems. In: Evolutionary Multi-Criterion Optimization: 7th International Conference, EMO 2013, Sheffield, UK, March 19–22, 2013. Proceedings 7. pp. 459–474. Springer (2013)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2013)
Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15, 183–195 (2010)
Knowles, J.D.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10, 50–66 (2006). https://doi.org/10.1109/TEVC.2005.851274
Liu, J., Wang, Y., Sun, G., Pang, T.: Solving highly expensive optimization problems via evolutionary expected improvement. IEEE Trans. Syst. Man Cybern. Syst. (2023)
Lin, X., Zhen, H.-L., Li, Z., Zhang, Q., Kwong, S.: A batched scalable multi-objective Bayesian optimization algorithm. arXiv preprint arXiv:1811.01323 (2018)
Konakovic Lukovic, M., Tian, Y., Matusik, W.: Diversity-guided multi-objective Bayesian optimization with batch evaluations. Adv. Neural. Inf. Process. Syst. 33, 17708–17720 (2020)
Lin, X., Yang, Z., Zhang, X., Zhang, Q.: Pareto set learning for expensive multi-objective optimization. arXiv preprint arXiv:2210.08495 (2022)
Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ponti, A., Archetti, F. (2025). The Unreasonable Effectiveness of Optimal Transport Distance in the Design of Multi-Objective Evolutionary Optimization Algorithms. In: Sergeyev, Y.D., Kvasov, D.E., Astorino, A. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2023. Lecture Notes in Computer Science, vol 14476. Springer, Cham. https://doi.org/10.1007/978-3-031-81241-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-81241-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81240-8
Online ISBN: 978-3-031-81241-5
eBook Packages: Computer ScienceComputer Science (R0)