Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing the Accuracy of Automatic Bone Age Estimation Using Optimized CNN Model on X-Ray Images

  • Conference paper
  • First Online:
Machine Learning Algorithms (ICMLA 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2238))

Included in the following conference series:

  • 32 Accesses

Abstract

Bone age assessment helps to detect and schedule treatment for several disorders. Estimating bone age differs from determining physical maturity based on the individual's date of birth. Assessing bone age determines development and progress, identifying and treating juvenile illnesses. Challenges in bone age assessment notably arise from poor-quality X-images, obscured bone structures, and the complexity of feature extraction due to degraded image quality, significantly impacting model performance. The proposed methodology involves utilizing pre-trained neural networks—InceptionV3, DenseNet201, XceptionNet, and MobileNetV2—finetuned by adding dense layers alongside dropout and kernel initializers adjustments. The hyperparameters for each pre-trained model are rigorously defined, and the performance evaluation encompasses a spectrum of optimizers such as Adam, Nadam, Adamax, RMSprop, and SGD. Notably, the implementation of the Adamax optimizer yields superior results, demonstrating exceptional accuracy in bone age assessment on the RSNA dataset, particularly with DenseNet201, InceptionV3, and XceptionNet models. This research presents a comprehensive comparative analysis showcasing the enhanced accuracy of bone age estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mughal, A.M., Hassan, N., Ahmed, A.: Bone age assessment methods: a critical review. Pak. J. Med. Sci. 30, 211 (1969). https://doi.org/10.12669/pjms.301.4295

    Article  Google Scholar 

  2. Liang, B., et al.: A deep automated skeletal bone age assessment model via region-based convolutional neural network. Futur. Gener. Comput. Syst. 98, 54–59 (2019). https://doi.org/10.1016/j.future.2019.01.057

    Article  Google Scholar 

  3. Alshamrani, K., Messina, F., Offiah, A.C.: Is the Greulich and Pyle atlas applicable to all ethnicities? A systematic review and meta-analysis. Eur. Radiol. 29, 2910–2923 (2019). https://doi.org/10.1007/s00330-018-5792-5

    Article  Google Scholar 

  4. Ostojic, S.M.: Prediction of adult height by Tanner-Whitehouse method in young Caucasian male athletes. QJM 106, 341–345 (2013). https://doi.org/10.1093/qjmed/hcs230

    Article  Google Scholar 

  5. Satoh, M.: Bone age: assessment methods and clinical applications. Clin. Pediatr. Endocrinol. 24, 143–152 (2015). https://doi.org/10.1297/cpe.24.143

    Article  Google Scholar 

  6. Lee, H., et al.: Fully automated deep learning system for bone age assessment. J. Digit. Imaging 30, 427–441 (2017). https://doi.org/10.1007/s10278-017-9955-8

    Article  Google Scholar 

  7. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826. IEEE, Las Vegas, NV, USA (2016). https://doi.org/10.1109/CVPR.2016.308

  8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807. IEEE, Honolulu, HI (2017). https://doi.org/10.1109/CVPR.2017.195

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269. IEEE, Honolulu, HI (2017). https://doi.org/10.1109/CVPR.2017.243

  10. Howard, A., et al. : MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017)

    Google Scholar 

  11. Bashetty, S., Raja, K., Adepu, S., Jain, A.: Optimizers in deep learning: a comparative study and analysis. IJRASET 10, 1032–1039 (2022). https://doi.org/10.22214/ijraset.2022.48050

    Article  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). http://arxiv.org/abs/1412.6980

  13. Kandel, I., Castelli, M., Popovič, A.: Comparative study of first order optimizers for image classification using convolutional neural networks on histopathology images. J. Imaging 6, 92 (2020). https://doi.org/10.3390/jimaging6090092

    Article  Google Scholar 

  14. Maggio, A., Flavel, A., Hart, R., Franklin, D.: Assessment of the accuracy of the Greulich and Pyle hand-wrist atlas for age estimation in a contemporary Australian population. Aust. J. Forensic Sci. 50, 385–395 (2018). https://doi.org/10.1080/00450618.2016.1251970

    Article  Google Scholar 

  15. Adler, B.H.: Vicente Gilsanz, Osman Ratib: bone age atlas. Pediatr. Radiol. 35, 1035 (2005). https://doi.org/10.1007/s00247-005-1527-2

    Article  Google Scholar 

  16. Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M., Leonardi, R.: Deep learning for automated skeletal bone age assessment in X-ray images. Med. Image Anal. 36, 41–51 (2017). https://doi.org/10.1016/j.media.2016.10.010

    Article  Google Scholar 

  17. Liu, Y., Zhang, C., Cheng, J., Chen, X., Wang, Z.J.: A multi-scale data fusion framework for bone age assessment with convolutional neural networks. Comput. Biol. Med. 108, 161–173 (2019). https://doi.org/10.1016/j.compbiomed.2019.03.015

    Article  Google Scholar 

  18. Bui, T.D., Lee, J.-J., Shin, J.: Incorporated region detection and classification using deep convolutional networks for bone age assessment. Artif. Intell. Med. 97, 1–8 (2019). https://doi.org/10.1016/j.artmed.2019.04.005

    Article  Google Scholar 

  19. Hao, P., et al.: Radiographs and texts fusion learning based deep networks for skeletal bone age assessment. Multimed. Tools Appl. 80, 16347–16366 (2021). https://doi.org/10.1007/s11042-020-08943-1

    Article  Google Scholar 

  20. Lee, J.H., Kim, Y.J., Kim, K.G.: Bone age estimation using deep learning and hand X-ray images. Biomed. Eng. Lett. 10, 323–331 (2020). https://doi.org/10.1007/s13534-020-00151-y

    Article  Google Scholar 

  21. Gao, Y., Zhu, T., Xu, X.: Bone age assessment based on deep convolution neural network incorporated with segmentation. Int. J. CARS 15, 1951–1962 (2020). https://doi.org/10.1007/s11548-020-02266-0

    Article  Google Scholar 

  22. Wibisono, A., Mursanto, P.: Multi region-based feature connected layer (RB-FCL) of deep learning models for bone age assessment. J. Big Data 7, 67 (2020). https://doi.org/10.1186/s40537-020-00347-0

    Article  Google Scholar 

  23. Li, S., Liu, B., Li, S., Zhu, X., Yan, Y., Zhang, D.: A deep learning-based computer-aided diagnosis method of X-ray images for bone age assessment. Complex Intell. Syst. 8, 1929–1939 (2022). https://doi.org/10.1007/s40747-021-00376-z

    Article  Google Scholar 

  24. Xu, X., Xu, H., Li, Z.: Automated bone age assessment: a new three-stage assessment method from coarse to fine. Healthcare 10, 2170 (2022). https://doi.org/10.3390/healthcare10112170

    Article  Google Scholar 

  25. Halabi, S.S., et al.: The RSNA pediatric bone age machine learning challenge. Radiology 290, 498–503 (2019). https://doi.org/10.1148/radiol.2018180736

    Article  Google Scholar 

  26. Chen, C., Chen, Z., Jin, X., Li, L., Speier, W., Arnold, C.W.: Attention-guided discriminative region localization and label distribution learning for bone age assessment. IEEE J. Biomed. Health Inform. 26, 1208–1218 (2022). https://doi.org/10.1109/JBHI.2021.3095128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivedita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nivedita, Solanki, S. (2025). Enhancing the Accuracy of Automatic Bone Age Estimation Using Optimized CNN Model on X-Ray Images. In: Khurana, M., Thakur, A., Kantha, P., Shieh, CS., Shukla, R.K. (eds) Machine Learning Algorithms. ICMLA 2024. Communications in Computer and Information Science, vol 2238. Springer, Cham. https://doi.org/10.1007/978-3-031-75861-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75861-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75860-7

  • Online ISBN: 978-3-031-75861-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics