Abstract
Probabilistic model checking is a formal verification technique to check whether stochastic models satisfy properties of interest. Along with a rich theory, the community has developed mature tool support, which in turn has been applied to a set of industrial case studies. This paper demonstrates various abilities of the probabilistic model checker Storm by a set of simple and more accessible examples.
This work was partially funded by NWO Veni grant ProMiSe (222.147), NWO Open Science Fund StormAE (OSF23.2.093), and a KI-Starter grant from the Ministerium für Kultur und Wissenschaft NRW.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In 2016, Storm was available as an alpha-version under heavy development by Joost-Pieter Katoen and the authors of this paper.
- 2.
also: scheduler or strategy.
- 3.
also: actions.
- 4.
- 5.
In a reaction to a long standing series of jokes, we are especially proud that Storm can be compiled within a few minutes.
- 6.
See, e.g., the “Nacht der Professoren”.
- 7.
The example is based on a puzzle of FiveThirtyEight.
- 8.
Unless accidents occur.
- 9.
Markov Decision Processes - Computerphile, youtube.com/watch?v=2iF9PRriA7w.
- 10.
The model checker Uppaal has been used in 2017 to retroactively plan commutes of Kim G. Larsen between the towns of Danmark and Uppsala in 1995.
- 11.
Abstracting good reasons: road blocks, coffee-deprivation, following famous cyclists.
- 12.
We want to highlight that pMCs models that use rational functions as transition probabilities are somewhat rare in the literature: The use of polynomials is more standard.
- 13.
- 14.
The model is intentionally simple and does not accurately reflect the physical process of freezing or melting ice layers.
References
de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University, USA (1997)
Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-40903-8_8
Andriushchenko, R., et al.: Tools at the frontiers of quantitative verification. CoRR arxiv:2405.13583 (2024). https://doi.org/10.48550/ARXIV.2405.13583
Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P.: Inductive synthesis for probabilistic programs reaches new horizons. In: TACAS 2021. LNCS, vol. 12651, pp. 191–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_11
Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003). https://doi.org/10.1109/TSE.2003.1205180
Baier, C., Hermanns, H., Katoen, J.-P.: The 10,000 facets of MDP model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 420–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_21
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104
Brázdil, T., et al.: Verification of Markov Decision processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9
Ceska, M., Hensel, C., Junges, S., Katoen, J.P.: Counterexample-guided inductive synthesis for probabilistic systems. Formal Aspects Comput. 33(4–5), 637–667 (2021). https://doi.org/10.1007/S00165-021-00547-2
Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.P., Topcu, U.: Convex optimization for parameter synthesis in MDPs. IEEE Trans. Autom. Control 67(12), 6333–6348 (2022). https://doi.org/10.1109/TAC.2021.3133265
Dai, P., Weld, D.S.M., Goldsmith, J.: Topological value iteration algorithms. J. Artif. Intell. Res. 42, 181–209 (2011)
Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31
Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_3
Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 317–332. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_25
Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_22
Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51
Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded tradeoff analysis in MDP. J. Autom. Reason. 64(7), 1483–1522 (2020). https://doi.org/10.1007/S10817-020-09574-9
Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide to MDP model checking algorithms. In: TACAS (1). Lecture Notes in Computer Science, vol. 13993, pp. 469–488. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30823-9_24
Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_20
Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022). https://doi.org/10.1007/S10009-021-00633-Z
Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: A Markov chain model checker. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 347–362. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_24
Jansen, N., Junges, S., Katoen, J.P.: Parameter synthesis in Markov models: a gentle survey. In: Principles of Systems Design. Lecture Notes in Computer Science, vol. 13660, pp. 407–437. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22337-2_20
Junges, S., et al.: Parameter synthesis for Markov models: covering the parameter space. Formal Methods Syst. Des. 62(1), 181–259 (2024). https://doi.org/10.1007/S10703-023-00442-X
Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016). https://doi.org/10.1145/2933575.2934574
Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011). https://doi.org/10.1016/J.PEVA.2010.04.001
Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based abstraction-refinement framework for Markov decision processes. Formal Methods Syst. Des. 36(3), 246–280 (2010). https://doi.org/10.1007/S10703-010-0097-6
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking and autonomy. Ann. Rev. Control. Rob. Auton. Syst. 5, 385–410 (2022). https://doi.org/10.1146/ANNUREV-CONTROL-042820-010947
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/S100090050010
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991). https://doi.org/10.1016/0890-5401(91)90030-6
Meggendorfer, T.: PET - a partial exploration tool for probabilistic verification. In: ATVA. LNCS, vol. 13505, pp. 320–326. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19992-9_20
Quatmann, T., Katoen, J.-P.: Multi-objective optimization of long-run average and total rewards. In: TACAS 2021. LNCS, vol. 12651, pp. 230–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_13
Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inf. 14(1), 370–379 (2018). https://doi.org/10.1109/TII.2017.2710316
Watanabe, K., van der Vegt, M., Hasuo, I., Rot, J., Junges, S.: Pareto curves for compositionally model checking string diagrams of MDPs. In: TACAS (2). Lecture Notes in Computer Science, vol. 14571, pp. 279–298. Springer, Heidelberg (2024). https://doi.org/10.1007/978-3-031-57249-4_14
Acknowledgements
We are grateful to the many contributors to Storm and refer to our Git repository for a complete list. Furthermore, we want to highlight that the research on probabilistic model checking and the development of tool support has been actively pursued by an active and friendly community of researchers whose efforts have also shaped the contents of this paper. Last but not least, the authors would like to thank Joost-Pieter Katoen for his warm leadership and guidance during the last decade. His leadership goes well beyond his impressive and well-recognised academic achievements and includes the need for a healthy work-life balance, good coffee and good music.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hensel, C., Junges, S., Quatmann, T., Volk, M. (2025). Riding the Storm in a Probabilistic Model Checking Landscape. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15261. Springer, Cham. https://doi.org/10.1007/978-3-031-75775-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-75775-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75774-7
Online ISBN: 978-3-031-75775-4
eBook Packages: Computer ScienceComputer Science (R0)