Nothing Special   »   [go: up one dir, main page]

Skip to main content

Emotion Recognition Method Based on EEG Signal Processing, Simplified Inception Network and Discrete Model

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2024)

Abstract

This work proposes D-Inception, a method for emotion recognition based on the Inception neural network and Electroencephalographic (EEG) signal processing. D-Inception is divided into preprocessing, feature extraction, and classification layers. The preprocessing separates the EEG signal into the alpha, beta, and theta bands, and the feature extraction finds the power spectrum in the alpha band and spectrum entropy in the beta and theta bands. The classification layer is a simplified Inception that analyzes the features to find spectral, spatial, and local relations to categorize the EEG signals into happy, neutral, sad, and fearful emotions. The experiments were developed with DEAP and SEED datasets, and the results show that D-Inception achieves an average accuracy of 92% and generalizes the learning better than the methods recently proposed in the literature using the discrete model.

This work is supported by ITCH-INAOE agreement INAOE-2024-CEC-N/09 and Tecnologico Nacional de Mexico under grants TecNM 19182.24-P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khare, S.K., Blanes-Vidal, V., Nadimi, E.S., Rajendra Acharya, U.: Emotion recognition and artificial intelligence: a systematic review (2014–2023) and research recommendations. Inf. Fusion 102, 102019 (2024)

    Article  Google Scholar 

  2. Sofian Suhaimi, N., Mountstephens, J., Teo, J.: EEG-based emotion recognition: a state-of-the-art review of current trends and opportunities. Comput. Intell. Neurosci. 2020, 8875426 (2020)

    Google Scholar 

  3. Yu, C., Wang, M.: Survey of emotion recognition methods using EEG information. Cogn. Robot. 2, 132–146 (2022)

    Article  Google Scholar 

  4. Algarni, M., Saeed, F., Al-Hadhrami, T., Ghabban, F., Al-Sarem, M.: Deep learning-based approach for emotion recognition using electroencephalography (EEG) signals using bi-directional long short-term memory (Bi-LSTM). Sensors 22(8), 2976 (2022)

    Article  Google Scholar 

  5. Ozdemir, M.A., Degirmenci, M., Izci, E., Akan, A.: EEG-based emotion recognition with deep convolutional neural networks. In: IEEE 8th Data-Driven Control and Learning Systems Conference (DDCLS), pp. 43–57 (2020)

    Google Scholar 

  6. Hosseini, M.S.K., Firoozabadi, S.M., Badie, K., Azadfallah, P.: Personality-based emotion recognition using EEG signals with a CNN-LSTM network. Brain Sci. 13(6), 947 (2023)

    Article  Google Scholar 

  7. Salankar, N., Mishra, P., Garg, L.: Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot. Biomed. Sig. Process. Control 65, 102389 (2021)

    Article  Google Scholar 

  8. Rahman, A., Anjum, A., Milu, M.H., Khanam, F., Uddin, M.S., Mollah, N.: Emotion recognition from EEG-based relative power spectral topography using convolutional neural network. Array 11, 100072 (2021)

    Article  Google Scholar 

  9. Topic, A., Russo, M.: Emotion recognition based on EEG feature maps through deep learning Network. Eng. Sci. Technol. Int. J. 24(6), 1442–1454 (2021)

    Google Scholar 

  10. Xu, D., Qin, X., Dong, X., Cui, X.: Emotion recognition of EEG signals based on variational mode decomposition and weighted cascade forest. Math. Biosci. Eng. 20(2), 2566–2587 (2022)

    Article  Google Scholar 

  11. Liang, S., Su, L., Fu, Y., Wu, L.: Multi-source joint domain adaptation for cross-subject and cross-session emotion recognition from electroencephalography. Front. Hum. Neurosci. 16, 921346 (2021)

    Article  Google Scholar 

  12. Zhang, R., Guo, H., Xu, Z., Hu, Y., Chen, M., Zhang, L.: MGFKD: a semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition. Brain Res. Bull. 208, 110901 (2024)

    Article  Google Scholar 

  13. Najam-Dar, M., Usman-Akram, M., Yuvaraj, R., Gul-Khawaja, S., Murugappan, M.: EEG-based emotion charting for Parkinson’s disease patients using Convolutional Recurrent Neural Networks and cross dataset learning. Comput. Biol. Med. 144, 105327 (2022)

    Article  Google Scholar 

  14. Koelstra, S., et al.: DEAP: a database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  15. Zheng, W.L., Liu, W., Lu, Y., Lu, B.L., Cichocki, A.: EmotionMeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 49(3), 1110–1122 (2019)

    Article  Google Scholar 

  16. Hamzah, H.A., Abdalla, K.: EEG-based emotion recognition systems; comprehensive study. Heliyon 10(10), e31485 (2024)

    Article  Google Scholar 

  17. Ramirez-Quintana, J.A., Madrid-Herrera, L., Chacon-Murguia, M.I., Corral-Martinez, L.F.: Brain-computer interface system based on P300 processing with convolutional neural network, novel speller, and low number of electrodes. Cogn. Comput. 13, 108–124 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Ramirez-Quintana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramirez-Quintana, J.A., Garay Acuña, F.E., Chacon-Murguia, M.I., Torres-García, A.A., Corral-Saenz, A.D. (2025). Emotion Recognition Method Based on EEG Signal Processing, Simplified Inception Network and Discrete Model. In: Martínez-Villaseñor, L., Ochoa-Ruiz, G. (eds) Advances in Soft Computing. MICAI 2024. Lecture Notes in Computer Science(), vol 15247. Springer, Cham. https://doi.org/10.1007/978-3-031-75543-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75543-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75542-2

  • Online ISBN: 978-3-031-75543-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics