Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ensemble Methods for Stock Market Prediction

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Forecasting stock market prices and returns is particularly difficult, given the nonlinearity, volatility, and complexity of the time series and the generally accepted, semi-strong form of market efficiency. Standard forecasting methods tend to follow a “winner-take-all” approach by which, for each series, a single believed to be the best method is chosen from a pool of competing times series, statistical learning, or machine learning methods. To cope with conceptual uncertainty and improve the accuracy of prediction in economics and finance time series forecasting, recent research investigated the use of dynamic model combinations. This paper investigates the performance of model combination approaches in financial time series forecasting. The set of methods includes a recent meta-learning strategy called Arbitrated Dynamic Ensemble (ADE), which is based on Arbitrating but dynamically combines heterogeneous learners by creating an embedded meta-learner for each base algorithm that specializes them across the time series. The findings show that: i) the ADE methodology presents a better average rank compared to widely used model combination approaches, including the original Arbitrating approach, Stacking for time series, Simple averaging, Fixed Share, or weighted adaptive combination of experts; ii) the ADE approach benefits from combining the base-learners as opposed to selecting the best forecasting model or using all experts; iii) the ADE method is sensitive to the aggregation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashofteh, A., Bravo, J.M.: A conservative approach for online credit scoring. Exp. Syst. Appl. 176(1–16), 114835 (2021a)

    Article  MATH  Google Scholar 

  • Ashofteh, A., Bravo, J.M., Ayuso, M.: A novel layered learning approach for forecasting respiratory disease excess mortality during the COVID-19 pandemic. In: Atas da 21ª Conferência da Associação Portuguesa de Sistemas de Informação 2021, CAPSI 2021, Volume 2021-October, Code 183080 (2021b)

    Google Scholar 

  • Ashofteh, A., Bravo, J.M., Ayuso, M.: A new ensemble learning strategy for panel time-series forecasting with applications to tracking respiratory disease excess mortality during the COVID-19 pandemic. Appl. Soft Comput. 128, 109422 (2022)

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  • Ayuso, M., Bravo, J.M., Holzmann, R., Palmer, E.: Automatic indexation of pension age to life expectancy: when policy design matters. Risks 9(5), 96 (2021). https://doi.org/10.3390/risks9050096

    Article  MATH  Google Scholar 

  • Barak, S., Arjmand, A., Ortobelli, S.: Fusion of multiple diverse predictors in stock market. J. Inf. Fusion 36, 90–102 (2017)

    Article  MATH  Google Scholar 

  • Bravo, J.M.: Longevity-linked life annuities: a Bayesian model ensemble pricing approach. In: CAPSI 2020 Proceedings. 29 (2020). https://aisel.aisnet.org/capsi2020/29

  • Bravo, J.M.: Forecasting longevity for financial applications: a first experiment with deep learning methods. In: Kamp, M., et al. (eds,) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol. 1525, pp. 232–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93733-1_17

  • Bravo, J.M.: Pricing participating longevity-linked life annuities: a Bayesian model ensemble approach. Euro. Actuarial J. 12, 125–159 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • Bravo, J.M., Ashofteh, A.: Ensemble methods for consumer price inflation forecasting. In: CAPSI 2023 Proceedings (23.ª Conferência da Associação Portuguesa de Sistemas de Informação) (2023)

    Google Scholar 

  • Bravo, J.M., Ayuso, M.: Mortality and life expectancy forecasts using Bayesian model combinations: an application to the Portuguese population. RISTI E40, 128–144 (2020)

    Article  MATH  Google Scholar 

  • Bravo, J.M., Ayuso, M.: Linking pensions to life expectancy: tackling conceptual uncertainty through Bayesian model averaging. Mathematics 9(24), 3307 (2021)

    Article  MATH  Google Scholar 

  • Bravo, J.M., Ayuso, M.: Forecasting the retirement age: a Bayesian model ensemble approach. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) Trends and Applications in Information Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing AIST, vol. 1365, pp. 123–135. Springer, Cham. https://doi.org/10.1007/978-3-030-72657-7_12

  • Bravo, J.M., Ayuso, M., Holzmann, R., Palmer, E.: Addressing the life expectancy gap in pension policy. Insur. Math. Econ. 99, 200–221 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Bravo, J.M., Ayuso, M., Holzmann, R., Palmer, E.: Intergenerational actuarial fairness when longevity increases: amending the retirement age. Insur. Math. Econ. 113, 161–184 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Bravo, J.M., El Mekkaoui de Freitas, N.: Valuation of longevity-linked life annuities. Insur. Math. Eco. 78, 212–229 (2018)

    Google Scholar 

  • Bravo, J.M., El Mekkaoui, N.: Short-term CPI inflation forecasting: probing with model combinations. In: Rocha et al. (eds.) Information Systems and Technologies. WorldCIST 2022. Lecture Notes in Networks and Systems, vol. 468, 564–578. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04826-5_56

  • Bravo, J.M., Nunes, J.P.V.: Pricing longevity derivatives via fourier transforms. Insur. Math. Eco. 96, 81–97 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Cerqueira, V., Torgo, L., Pinto, F., Soares, C.: Arbitrage of forecasting experts. Mach. Learn. 108, 913–944 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Cervelló-Royo, R., Guijarro, F., Michniuk, K.: Stock market trading rule based on pattern recognition and technical analysis: forecasting the DJIA index with intraday data. Expert Syst. Appl. 42(14), 5963–5975 (2015)

    Article  MATH  Google Scholar 

  • Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  • Chamboko, R., Bravo, J.M.: On the modelling of prognosis from delinquency to normal performance on retail consumer loans. Risk Manag. 18(4), 264–287 (2016)

    Article  MATH  Google Scholar 

  • Chamboko, R., Bravo, J.M.: A multi-state approach to modelling intermediate events and multiple mortgage loan outcomes. Risks 8, 64 (2020)

    Article  MATH  Google Scholar 

  • Chourmouziadis, K., Chatzoglou, P.D.: An intelligent short term stock trading fuzzy system for assisting investors in portfolio management. Expert Syst. Appl. 43, 298–311 (2016)

    Article  Google Scholar 

  • Clemente, C., Guerreiro, G.R., Bravo, J.M.: Modelling motor insurance claim frequency and severity using gradient boosting. Risks 11(9), 163 (2023). https://doi.org/10.3390/risks11090163

    Article  MATH  Google Scholar 

  • Dawid, A.P.: Present position and potential developments: some personal views: statistical theory: the prequential approach. J. Roy. Stat. Soc. Ser. A 147(2), 278–292 (1984)

    Article  MATH  Google Scholar 

  • Fama, E.: Random walks in stock market prices. Financ. Anal. J. 21, 55–59 (1965)

    Article  MATH  Google Scholar 

  • Franses, P.H., Ghijsels, H.: Additive outliers, GARCH and forecasting volatility. Int. J. Forecast. 15(1), 1–9 (1999)

    Article  MATH  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  • Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  • Gaillard, P., Goude, Y.:. Forecasting electricity consumption by aggregating experts; how to design a good set of experts. In: Antoniadis, A., Poggi, JM., Brossat, X. (eds.) Modelling and Stochastic Learning for Forecasting in High Dimensions. Lecture Notes in Statistics, vol. 217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18732-7_6

  • Hansen, P.R., Lunde, A., Nason, J.M.: The model confidence set. Econometrica 79(2), 453–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, C.F.: A hybrid stock selection model using genetic algorithms and support vector regression. J. Appl. Soft Comput. 12(2), 807–818 (2012)

    Article  MATH  Google Scholar 

  • Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. 3rd Edition, Otexts Publishing (2021)

    Google Scholar 

  • Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  PubMed  MATH  Google Scholar 

  • Jose, V.R.R., Winkler, R.L.: Simple robust averages of forecasts: some empirical results. Int. J. Forecast. 24(1), 163–169 (2008)

    Article  MATH  Google Scholar 

  • Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A.: Kernlab—An S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004)

    Article  MATH  Google Scholar 

  • Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  ADS  PubMed  MATH  Google Scholar 

  • Koning, A.J., Franses, F.H., Hibon, M., Stekler, H.O.: The M3 competition: statistical tests of the results. Int. J. Forecast. 21, 397–409 (2005)

    Article  MATH  Google Scholar 

  • Kuhn, M., Weston, S., Keefer, C.: Code for Cubist by Ross Quinlan, N.C.C.: Cubist: Rule- and Instance-Based Regression Modeling. R package Version 0.4.2.1 (2023)

    Google Scholar 

  • Kwiatkowski, D., Phillips, P.C., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J. Econometrics 54(1–3), 159–178 (1992)

    Article  MATH  Google Scholar 

  • Malkiel, B.G., Fama, E.F.: Efficient capital markets: a review of theory and empirical work. J. Financ. 25(2), 383–417 (1970)

    Article  MATH  Google Scholar 

  • Mevik, B.H., Wehrens, R., Liland, K.H.: pls: Partial Least Squares and Principal Component Regression. R Package Version 2.8–2 (2023)

    Google Scholar 

  • Milborrow, S.: earth: Multivariate Adaptive Regression Spline Models: Derived from mda:mars by Trevor Hastie and Rob Tibshirani (2012)

    Google Scholar 

  • Ortega, J., Koppel, M., Argamon, S.: Arbitrating among competing classifiers using learned referees. Knowl. Inf. Syst. 3(4), 470–490 (2001)

    Article  MATH  Google Scholar 

  • R Core Team: R: a language and environment for statistical computing. In: Vienna: R Foundation for Statistical Computing (2022)

    Google Scholar 

  • Ridgeway, G.: gbm: Generalized Boosted Regression Models. R Package Version 2.1.8.1. (2022)

    Google Scholar 

  • Samuels, J.D., Sekkel, R.M.: Model confidence sets and forecast combination. Int. J. Forecast. 33(1), 48–60 (2017)

    Article  MATH  Google Scholar 

  • Sánchez, I.: Adaptive combination of forecasts with application to wind energy. Int. J. Forecast. 24(4), 679–693 (2008)

    Article  MATH  Google Scholar 

  • Simões, C., Oliveira, L., Bravo, J.M.: Immunization strategies for funding multiple inflation-linked retirement income benefits. Risks 9(4), 60 (2021)

    Article  MATH  Google Scholar 

  • Steel, M.F.: Model averaging and its use in economics. J. Econ. Lit. 58(3), 644–719 (2020)

    Article  MATH  Google Scholar 

  • Timmermann, A.: Elusive return predictability. Int. J. Forecast. 24(1), 1–18 (2008)

    Article  MATH  Google Scholar 

  • Toochaei, M.R., Moeini, F.: Evaluating the performance of ensemble classifiers in stock returns prediction using effective features. Exp. Syst. Appl. 213, 119186 (2023)

    Article  MATH  Google Scholar 

  • Tsai, C.F., Hsu, Y.F., Yen, D.C.: A comparative study of classifier ensembles for bankruptcy prediction. Appl. Soft Comput. 24, 977–984 (2014)

    Article  MATH  Google Scholar 

  • Tsai, C.F., Lin, Y.C., Yen, D.C., Chen, Y.M.: Predicting stock returns by classifier ensembles. J. Appl. Soft Comput. 11(2), 2452–2459 (2011)

    Article  MATH  Google Scholar 

  • Venables, W.N., Ripley, B D.: Modern Applied Statistics with S (4th ed.). New York, Springer (2002). https://doi.org/10.1007/978-0-387-21706-2

  • Wang, J.Z., Wang, J.J., Zhang, Z.G., Guo, S.P.: Forecasting stock indices with back propagation neural network. Exp. Syst. Appl. 38(11), 14346–14355 (2011)

    Article  MATH  Google Scholar 

  • Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  MATH  Google Scholar 

  • Wright, M. N.: Ranger: A fast implementation of random forests. In: R Package Version 0.15.1 (2023)

    Google Scholar 

  • Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the 20th International Conference on Machine Learning (ICML-03) (pp. 928–936) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Miguel Bravo .

Editor information

Editors and Affiliations

Ethics declarations

Funding and Acknowledgments

This research was funded by national funds through the FCT—Fundação para a Ciência e a Tecnologia, I.P., grants UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC) and UIDB/00315/2020—BRU-ISCTE-IUL. The author expresses his gratitude to the participants at ECML/PKDD MIDAS 2023 Workshop, to the organizing committee, and the anonymous referees for their careful review and insightful comments that helped to strengthen the quality of the paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bravo, J.M. (2025). Ensemble Methods for Stock Market Prediction. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2137. Springer, Cham. https://doi.org/10.1007/978-3-031-74643-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74643-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74642-0

  • Online ISBN: 978-3-031-74643-7

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics