Nothing Special   »   [go: up one dir, main page]

Skip to main content

S-SYNTH: Knowledge-Based, Synthetic Generation of Skin Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Development of artificial intelligence (AI) techniques in medical imaging requires access to large-scale and diverse datasets for training and evaluation. In dermatology, obtaining such datasets remains challenging due to significant variations in patient populations, illumination conditions, and acquisition system characteristics. In this work, we propose S-SYNTH, the first knowledge-based, adaptable open-source skin simulation framework to rapidly generate synthetic skin, 3D models and digitally rendered images, using an anatomically inspired multi-layer, multi-component skin and growing lesion model. The skin model allows for controlled variation in skin appearance, such as skin color, presence of hair, lesion shape, and blood fraction among other parameters. We use this framework to study the effect of possible variations on the development and evaluation of AI models for skin lesion segmentation, and show that results obtained using synthetic data follow similar comparative trends as real dermatologic images, while mitigating biases and limitations from existing datasets including small dataset size, lack of diversity, and under-representation.

A. Kim, N. Saharkhiz and E. Sizikova—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code and supporting data are available at: https://github.com/DIDSR/ssynth-release.

References

  1. Poly Haven: the public 3D asset library. https://polyhaven.com/hdris

  2. Sidefx: Houdini (2022), https://www.sidefx.com/docs/houdini/index.html

  3. Abhishek, K., Jain, A., Hamarneh, G.: Investigating the quality of dermamnist and fitzpatrick17k dermatological image datasets. arXiv preprint arXiv:2401.14497 (2024)

  4. Azad, R., Al-Antary, M.T., Heidari, M., Merhof, D.: Transnorm: Transformer provides a strong spatial normalization mechanism for a deep segmentation model. IEEE Access (2022)

    Google Scholar 

  5. Badano, A., Lago, M., Sizikova, E., Delfino, J.G., Guan, S., Anastasio, M.A., Sahiner, B.: The stochastic digital human is now enrolling for in silico imaging trials–methods and tools for generating digital cohorts. Progress in Biomedical Engineering (2023)

    Google Scholar 

  6. Baur, C., Albarqouni, S., Navab, N.: Melanogans: high resolution skin lesion synthesis with gans. arXiv:1804.04338 (2018)

  7. Behara, K., Bhero, E., Agee, J.T.: Skin lesion synthesis and classification using an improved dcgan classifier. Diagnostics (2023)

    Google Scholar 

  8. Benčević, M., Habijan, M., Galić, I., Babin, D., Pižurica, A.: Understanding skin color bias in deep learning-based skin lesion segmentation. Computer Methods and Programs in Biomedicine (2024)

    Google Scholar 

  9. Bench, C., Hauptmann, A., Cox, B.: Toward accurate quantitative photoacoustic imaging: learning vascular blood oxygen saturation in three dimensions. Journal of Biomedical Optics 25(8), 085003–085003 (2020)

    Article  Google Scholar 

  10. Bozorgpour, A., Sadegheih, Y., Kazerouni, A., Azad, R., Merhof, D.: Dermosegdiff: A boundary-aware segmentation diffusion model for skin lesion delineation. In: International Workshop on PRedictive Intelligence In MEdicine (PRIME). Springer (2023)

    Google Scholar 

  11. Chen, M.L., Rotemberg, V., Lester, J.C., Novoa, R.A., Chiou, A.S., Daneshjou, R.: Evaluation of diagnosis diversity in artificial intelligence datasets: a scoping review. British Journal of Dermatology (2023)

    Google Scholar 

  12. Chi, Y., Bi, L., Kim, J., Feng, D., Kumar, A.: Controlled synthesis of dermoscopic images via a new color labeled generative style transfer network to enhance melanoma segmentation. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2018)

    Google Scholar 

  13. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., Dusza, S., Gutman, D., Helba, B., Kalloo, A., Liopyris, K., Marchetti, M., et al.: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv:1902.03368 (2019)

  14. Daneshjou, R., Smith, M.P., Sun, M.D., Rotemberg, V., Zou, J.: Lack of transparency and potential bias in artificial intelligence data sets and algorithms: a scoping review. JAMA Dermatology (2021)

    Google Scholar 

  15. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional gans. arXiv:1706.02633 (2017)

  16. Ghorbani, A., Natarajan, V., Coz, D., Liu, Y.: Dermgan: Synthetic generation of clinical skin images with pathology. In: Machine Learning for Health (ML4H). PMLR (2020)

    Google Scholar 

  17. Gröger, F., Lionetti, S., Gottfrois, P., Gonzalez-Jimenez, A., Groh, M., Daneshjou, R., Navarini, A.A., Pouly, M., Consortium, L., et al.: Towards reliable dermatology evaluation benchmarks. In: Machine Learning for Health (ML4H). PMLR (2023)

    Google Scholar 

  18. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Transactions on Biomedical Engineering (2021)

    Google Scholar 

  19. Hossain, S.I., Roy, S.S., De Herve, J.D.G., Mercer, R.E., Nguifo, E.M.: A skin lesion hair mask dataset with fine-grained annotations. Data in Brief (2023)

    Google Scholar 

  20. Jacques, S.L.: Optical properties of biological tissues: a review. Physics in Medicine & Biology (2013)

    Google Scholar 

  21. Jakob, W., Speierer, S., Roussel, N., Nimier-David, M., Vicini, D., Zeltner, T., Nicolet, B., Crespo, M., Leroy, V., Zhang, Z.: Mitsuba 3 renderer (2022), https://mitsuba-renderer.org

  22. Kim, A.S., Sengupta, A., Badano, A.: Automated animation pipeline for visualizing in silico tumor growth models. In: Medical Imaging 2023: Physics of Medical Imaging. SPIE (2023)

    Google Scholar 

  23. Kinyanjui, N.M., Odonga, T., Cintas, C., Codella, N.C., Panda, R., Sattigeri, P., Varshney, K.R.: Estimating skin tone and effects on classification performance in dermatology datasets. arXiv:1910.13268 (2019)

  24. Li, W., Raj, A.N.J., Tjahjadi, T., Zhuang, Z.: Digital hair removal by deep learning for skin lesion segmentation. Pattern Recognition (2021)

    Google Scholar 

  25. Mirikharaji, Z., Abhishek, K., Bissoto, A., Barata, C., Avila, S., Valle, E., Celebi, M.E., Hamarneh, G.: A survey on deep learning for skin lesion segmentation. Medical Image Analysis (2023)

    Google Scholar 

  26. Oliveira, D.A.B.: Controllable skin lesion synthesis using texture patches, bézier curves and conditional gans. In: International Symposium on Biomedical Imaging (ISBI). IEEE (2020)

    Google Scholar 

  27. Rezk, E., Eltorki, M., El-Dakhakhni, W., et al.: Improving skin color diversity in cancer detection: deep learning approach. JMIR Dermatology (2022)

    Google Scholar 

  28. Ruan, J., Xie, M., Gao, J., Liu, T., Fu, Y.: Ege-unet: an efficient group enhanced unet for skin lesion segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer (2023)

    Google Scholar 

  29. Sagers, L.W., Diao, J.A., Groh, M., Rajpurkar, P., Adamson, A.S., Manrai, A.K.: Improving dermatology classifiers across populations using images generated by large diffusion models. arXiv:2211.13352 (2022)

  30. Sagers, L.W., Diao, J.A., Melas-Kyriazi, L., Groh, M., Rajpurkar, P., Adamson, A.S., Rotemberg, V., Daneshjou, R., Manrai, A.K.: Augmenting medical image classifiers with synthetic data from latent diffusion models. arXiv:2308.12453 (2023)

  31. Sengupta, A., Sharma, D., Badano, A.: Computational model of tumor growth for in silico trials. In: Medical Imaging 2021: Physics of Medical Imaging. SPIE (2021)

    Google Scholar 

  32. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. scientific data. 2018; 5: 180161. Search in (2018)

    Google Scholar 

  33. Vasudev, V., Piepers, B., Maidment, A.D., Kimpe, T., Platisa, L., Philips, W., Bakic, P.R.: Simulation pipeline for virtual clinical trials of dermatology images. In: Medical Imaging 2019: Physics of Medical Imaging. vol. 10948, pp. 600–609. SPIE (2019)

    Google Scholar 

  34. Walter, B., Marschner, S.R., Li, H., Torrance, K.E.: Microfacet models for refraction through rough surfaces. In: Eurographics Conference on Rendering Techniques (2007)

    Google Scholar 

  35. Walters, K.A., Roberts, M.S.: The structure and function of skin. In: Dermatological and Transdermal Formulations. CRC press (2002)

    Google Scholar 

  36. Yan, S., Yu, Z., Zhang, X., Mahapatra, D., Chandra, S.S., Janda, M., Soyer, P., Ge, Z.: Towards trustable skin cancer diagnosis via rewriting model’s decision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11568–11577 (2023)

    Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for helpful suggestions. We thank the OpenHPC and RST teams (OSEL/CDRH/FDA) for providing help with experiments and data release. This is a contribution of the US Food and Drug Administration and is not subject to copyright. The mention of commercial products herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Sizikova .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7828 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, A. et al. (2024). S-SYNTH: Knowledge-Based, Synthetic Generation of Skin Images. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15003. Springer, Cham. https://doi.org/10.1007/978-3-031-72384-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72384-1_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72383-4

  • Online ISBN: 978-3-031-72384-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics