Abstract
Technologies have developed enormously in recent years, and the involvement of artificial intelligence (AI) in processes from different fields is becoming more and more common these days. The integration of AI technologies into human resources (HR) has garnered significant attention and transformed how organizations manage their workforce. This chapter discusses the ethical difficulties raised by the increasing use of AI in HR procedures. It explores artificial intelligence’s possible benefits and downsides, with a special emphasis on justice, prejudice, privacy, and transparency. The chapter also emphasizes the significance of ensuring that AI-driven HR procedures adhere to ethical values and regulatory laws, hence creating a more inclusive and equal workplace. AI is playing a significant pivotal role in HR decision-making; understanding and addressing these ethical concerns is crucial to maintaining the balance between innovation and ethics in the realm of HR management. The chapter concludes by highlighting the need for guidelines and best practices to navigate the evolving landscape of AI in HR, ultimately fostering a more responsible and ethical integration of AI technologies in the workplace.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdeldayem, M. M., & Aldulaimi, S. H. (2020). Trends and opportunities of artificial intelligence in human resource management: Aspirations for public sector in Bahrain. International Journal of Scientific and Technology Research, 9(1), 3867–3871.
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), 1–41.
Akhtar, P., Ghouri, A. M., Khan, H. U. R., Amin ul Haq, M., Awan, U., Zahoor, N., … Ashraf, A. (2022). Detecting fake news and disinformation using artificial intelligence and machine learning to avoid supply chain disruptions. Annals of Operations Research, 327(2), 633–657.
Allal-Chérif, O., Alba, A., & Castaño, R. (2021). Intelligent recruitment: How to identify, select, and retain talents from around the world using artificial intelligence. Technological Forecasting and Social Change, 169, 120822.
Amnesty International. (2019, June 21). Ethical AI principles won’t solve a human rights crisis, research report. https://www.amnesty.org/en/latest/research/2019/06/ethical-ai-principles-wont-solve-a-human-rights-crisis/
Baldegger, R., Caon, M., & Sadiku, K. (2020). Correlation between entrepreneurial orientation and implementation of AI in human resources management (HRM). Technology Innovation Management Review, 10(4).
Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews. Review of General Psychology, 1, 311–320. https://doi.org/10.1037/1089-2680.1.3.311
Benbya, H., Davenport, T. H., & Pachidi, S. (2020). Artificial intelligence in organizations: Current state and future opportunities. MIS Quarterly Executive, 19(4).
Bersin, J. (2018). New ways to gauge talent and potential. https://sloanreview.mit.edu/article/new-ways-to-gauge-talent-and-potential/
Binsaeed, R. H., Yousaf, Z., Grigorescu, A., Trandafir, R. A., & Nassani, A. A. (2023a). Knowledge sharing and the moderating role of digital innovation on employees innovative work behavior. Sustainability, 15(14), 10788. https://doi.org/10.3390/su151410788
Binsaeed, R. H., Grigorescu, A., Yousaf, Z., Condrea, E., & Nassani, A. A. (2023b). Leading role of big data analytic capability in innovation performance: Role of organizational readiness and digital orientation. Systems, 11(6), 284. https://doi.org/10.3390/systems11060284
Birhane, A. (2021). Algorithmic injustice: A relational ethics approach. Patterns, 2(2), 1–9.
Black, J. S., & van Esch, P. (2021). AI-enabled recruiting in the war for talent. Business Horizons, 64(4), 513–524. https://doi.org/10.1016/j.bushor.2021.02.015
Bolander, T. (2019). What do we lose when machines take the decisions? Journal of Management &Governance, 23(4), 849–867. https://doi.org/10.1007/s10997-019-09493-x
Broek, E., Sergeeva, A., & Vrije, M. (2021). When the machine meets the expert: An ethnography of developing AI for hiring. MIS Quarterly., 45, 1557–1580. https://doi.org/10.25300/MISQ/2021/16559
Bujold, A., Roberge-Maltais, I., Parent-Rocheleau, X., Boasen, J., Senecal, S., & Léger, P.-M. (2023). Responsible artificial intelligence in human resources management: A review of the empirical literature. AI and Ethics, 1–16. https://doi.org/10.1007/s43681-023-00325-1
Burton, S. L. (2019). Grasping the cyber-world: Artificial intelligence and human capital meet to inform leadership. International Journal of Economics, Commerce and Management, 7(12), 707–759.
Chamorro-Premuzic, T., Winsborough, D., Sherman, R., & Hogan, R. (2016). New talent signals: Shiny new objects or a brave New World? Industrial and organizational Psychology, 1, 1–20. https://doi.org/10.1017/iop.2016.6
Charlwood, A., & Guenole, N. (2022). Can HR adapt to the paradoxes of artificial intelligence? Human Resource Management Journal., 32. https://doi.org/10.1111/1748-8583.12433
Choudhury, P., Starr, E., & Agarwal, R. (2020). Machine learning and human capital complementarities: Experimental evidence on bias mitigation. Strategic Management Journal., 41. https://doi.org/10.1002/smj.3152
Collings, D. G., Nyberg, A. J., Wright, P. M., & McMackin, J. (2021). Leading through paradox in a COVID-19 world: Human resources comes of age. Human Resource Management Journal, 31(4), 819–833.
Dastin, J. (2018). Insight—Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. https://in.reuters.com/article/amazon-com-jobs-automation-idINKCN1MK0AH
Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data—Evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
França, T., Mamede, J., Barroso, J., & Santos, V. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9, e14694. https://doi.org/10.1016/j.heliyon.2023.e14694
Fritts, M., & Cabrera, F. (2021). AI recruitment algorithms and the dehumanization problem. Ethics and Information Technology, 23(4), 791–801. https://doi.org/10.1007/s10676-021-09615-w
Grigorescu, A., Lincaru, C., & Pîrciog, S. (2020). Ethic leadership trigger for talents. LUMEN Proceedings, 11, 32–44. https://doi.org/10.18662/lumproc/gekos2020/05
Hamilton, R. H., & Davison, H. K. (2022). Legal and ethical challenges for HR in machine learning. Employee Responsibilities and Rights Journal, 34(1), 19–39. https://doi.org/10.1007/s10672-021-09377-z
Hauer, M., Kevekordes, J., Haeri, A., & Maryam. (2021). Legal perspective on possible fairness measures—A legal discussion using the example of hiring decisions. Computer Law & Security Review., 42, 105583. https://doi.org/10.1016/j.clsr.2021.105583
Hermann, E. (2021). Leveraging artificial intelligence in Marketing for Social Good—An Ethical Perspective. Journal of Business Ethics, 179, 1–19.
Houser, K. (2019). Can AI solve the diversity problem in the tech industry? Mitigating Noise and Bias in Employment Decision-Making, 65, 290–354.
Huang, M. J., Tsou, Y. L., & Lee, S. C. (2006). Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge. Knowledge-Based Systems, 19(6), 396–403. https://doi.org/10.1016/j.knosys.2006.04.003
Keller, S., & Meaney, M. (2017). Leading organisations: Ten timeless truths. Bloomsbury Publishing.
Kim, C. Y. (2016). Presidential legitimacy through the anti-discrimination lens. Chi.-Kent L. Rev, 91, 207. https://scholarship.kentlaw.iit.edu/cklawreview/vol91/iss1/9
Kong, H., Yuan, Y., Baruch, Y., Bu, N., Jiang, X., & Wang, K. (2021). Influences of artificial intelligence (AI) awareness on career competency and job burnout. International Journal of Contemporary Hospitality Management, 33(2), 717–734. https://doi.org/10.1108/IJCHM-07-2020-0789
Krishnamurthy, V. (2018). It’s not enough for AI to be “ethical”; it must also be “rights respecting.”. Berkman Klein Center for Internet & Society at Harvard University. https://medium.com/berkman-klein-center/its-not-enough-for-ai-to-be-ethical-it-must-also-be-rights-respecting-b87f7e215b97
Kshetri, N. (2021). Evolving uses of artificial intelligence in human resource management in emerging economies in the global south: Some preliminary evidence. Management Research Review, 44(7), 970–990.
Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911–926.
Malik, A., Thevisuthan, P., & De Sliva, T. (2022). Artificial intelligence, employee engagement, experience, and HRM BT—strategic human resource management and employment relations: An international perspective (pp. 171–184). Springer International Publishing. https://doi.org/10.1007/978-3-030-90955-0_16
Michailidis, M. P. (2018). The challenges of AI and blockchain on HR recruiting practices. Cyprus Review, 30(2), 169–180.
Nankervis, A., Connell, J., Cameron, R., Montague, A., & Prikshat, V. (2021). ‘Are we there yet?’ Australian HR professionals and the fourth industrial revolution. Asia Pacific Journal of Human Resources, 59(1), 3–19. https://doi.org/10.1111/1744-7941.12245
Palos-Sanchez, P., Baena-Luna, P., Badicu, A., Moro, I., & Carlos, J. (2022). Artificial intelligence and human resources management: A bibliometric analysis. Applied Artificial Intelligence, 36. https://doi.org/10.1080/08839514.2022.2145631
Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2021). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multiprocess perspective. Human Resource Management Review, 31, 1–22.
Peres, R., Jia, X., Lee, J., Sun, K., Colombo, A., & Barata, J. (2020). Industrial artificial intelligence in industry 4.0—Systematic review, challenges and outlook. IEEE Access, 8, 220121–220139. https://doi.org/10.1109/ACCESS.2020.3042874
Pillai, R., & Sivathanu, B. (2020). Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations. Benchmarking: An International Journal, 27(9), 2599–2629. https://doi.org/10.1108/BIJ-04-2020-0186
Prikshat, V., Malik, A., & Budhwar, P. (2021). AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review, 100860.
Qamar, Y., Agrawal, R. K., Samad, T. A., & Chiappetta Jabbour, C. J. (2021). When technology meets people: The interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management, 34(5), 1339–1370. https://doi.org/10.1108/JEIM-11-2020-0436
Rąb-Kettler, K., & Lehnervp, B. (2019). Recruitment in the times of machine learning. Management Systems in Production Engineering, 27(2), 105–109. https://doi.org/10.1515/mspe-2019-0018
Raso, F., Hilligoss, H., Krishnamurthy, V., Bavitz, C., & Kim, L. (2018). Artificial Intelligence & Human Rights: Opportunities & risks (SSRN scholarly paper ID 3259344) (p. 63).
Robert, L. P., Pierce, C. S., Morris, L., Kim, S., & Alahmad, R. (2020). Designing fair AI for managing employees in organizations: A review, critique, and design agenda. Human–Computer Interaction, 35, 545–575.
Rodgers, W., Murray, J. M., Stefanidis, A., Degbey, W. Y., & Tarba, S. Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Human Resource Management Review. https://doi.org/10.1016/j.hrmr.2022.100925
Sajjadiani, S., Sojourner, A. J., Kammeyer-Mueller, J. D., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. The Journal of Applied Psychology, 104(10), 1207–1225. https://doi.org/10.1037/apl0000405
Salmerón, J. L., & Palos-Sánchez, P. R. (2019). Uncertainty propagation in fuzzy Grey cognitive maps with Hebbian-like learning algorithms. IEEE Transactions on Cybernetics, 49(1), 211–220. https://doi.org/10.1109/TCYB.2017.2771387
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, Elsevier, 104(C), 333–339.
Soleimani, M., Intezari, A., & Pauleen, D. J. (2022). Mitigating cognitive biases in developing ai-assisted recruitment systems: A knowledge-sharing approach. International Journal of Knowledge Management, 18(1), 1–18. https://doi.org/10.4018/IJKM.290022
Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
Teodorescu, M. H., Morse, L., Awwad, Y., & Kane, J. (2020). A framework for fairer machine learning in organisations. Academy of Management Proceedings, 2020(1), 16889.
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14, 207–222. https://doi.org/10.1111/1467-8551.00375
United Nations. (2018). United Nations Human Rights Report 2018, United Nations Human Rights Office, Geneva, Switzerland. https://www.ohchr.org/sites/default/files/Documents/Publications/OHCHRreport2018.pdf
Van den Broek, E., Sergeeva, A., & Huysman, M. (2021). When the machine meets the expert: An ethnography of developing AI for hiring. MIS Quarterly, 45(3).
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398
Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. Management Information Systems Quarterly, 26, 3.
Yam, J., & Skorburg, J. A. (2021). From human resources to human rights: Impact assessments for hiring algorithms. Ethics and Information Technology, 23, 611–623. https://doi.org/10.1007/s10676-021-09599-7
Yawalkar, M. V. V. (2019). A study of artificial intelligence and its role in human resource management. International Journal of Research and Analytical Reviews (IJRAR), 6(1), 20–24.
Zhang, Y., Xu, S., Zhang, L., & Yang, M. (2021). Big data and human resource management research: An integrative review and new directions for future research. Journal of Business Research, 133(April), 34–50. https://doi.org/10.1016/j.jbusres.2021.04.019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lungu, DC., Grigorescu, A., Yousaf, Z. (2024). The Ethical Concerns of AI Technologies in Human Resources. In: Chivu, L., Ioan-Franc, V., Georgescu, G., De Los Ríos Carmenado, I., Andrei, J.V. (eds) Europe in the New World Economy: Opportunities and Challenges. ESPERA 2023. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-031-71329-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-71329-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71328-6
Online ISBN: 978-3-031-71329-3
eBook Packages: Economics and FinanceEconomics and Finance (R0)