Nothing Special   »   [go: up one dir, main page]

Skip to main content

Eco-Friendly AI: A Guide to Energy-Efficient Techniques Across the AI Life-Cycle

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2180))

Included in the following conference series:

  • 253 Accesses

Abstract

As AI’s influence expands, numerous concerns about potential risks emerge, ranging from job displacement and lack of transparency to cybersecurity threats. However, the urgency of climate change—a critical challenge impacting ecosystems and livelihoods—emphasizes the need to address AI’s energy usage and carbon emissions.

In recent years, researchers have developed techniques to mitigate the environmental footprint of AI. This work presents an overview of these recent techniques aimed at making AI more sustainable throughout its life-cycle. It also compares these techniques by their impact, showcasing their effects in a Cheat-Sheet for practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AI is booming – and helping planet Earth burn faster. en-US. Apr. 2023. https://cybernews.com/editorial/chatgpt-carbon-footprint/ (visited on 07/02/2023)

  2. AWS Events. AWS Re:Invent 2022 - [NEW LAUNCH!] Introducing AWS Inferentia2-based EC2 Inf2 Instances (CMP334). Dec. 2022. (Visited on 06/09/2024)

    Google Scholar 

  3. Bian, J., et al.: CAFE: Carbon-Aware Federated Learning in Geograph- ically Distributed Data Centers. Feb. 2024. arXiv: 2311.03615 [cs]. (Visited on 02/21/2024)

    Google Scholar 

  4. Bigcode/Starcoder Hugging Face. https://huggingface.co/bigcode/starcoder. Aug. 2023. (Visited on 04/14/2024)

  5. Boutros, A., et al.: Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs. In: 2020 International Conference on Field-Programmable Technology (ICFPT). Maui, HI, USA: IEEE, pp. 10–19 (2020). isbn: 978–1–66542–302–1. https://doi.org/10.1109/ICFPT51103.2020.00011. (Visited on 04/19/2024)

  6. Brownlee, J.: Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python. Machine Learning Mastery (2020)

    Google Scholar 

  7. Cai, H., et al.: Once-for-All: Train One Network and Specialize it for Efficient Deployment (2020). In: arXiv preprint arXiv:1908.09791

  8. Choi, Y., Kim, Y., Rhu, M:. LazyBatching: An SLA- aware Batching System for Cloud Machine Learning Inference (2020). arXiv:2010.13103 [cs]. (Visited on 04/19/2024)

  9. Davy, B.: Building an AWS EC2 Carbon Emissions Dataset (2021). https://medium.com/teads-engineering/building-an-aws-ec2-carbon-emissions-dataset-3f0fd76c98ac

  10. Dhilleswararao, P., et al.: Efficient hardware architectures for accelerating deep neural networks: survey. IEEE Access 10, 131788–131828 (2022). https://doi.org/10.1109/ACCESS.2022.3229767

    Article  Google Scholar 

  11. Eilam, T.: et al.: Towards a methodology and framework for AI sustainability metrics. In: Proceedings of the 2nd Workshop on Sustainable Computer Systems. Boston MA USA: ACM, pp. 1–7 (2023). isbn: 9798400702426. https://doi.org/10.1145/3604930.3605715. (Visited on 02/21/2024)

  12. Frey, N.C., et al.: Energy-aware neural architecture selection and hyperparameter optimization. In: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 732–741 (2022). https://doi.org/10.1109/IPDPSW55747.2022.00125

  13. Get the Latest from Re:Invent (2022). https://repost.aws/articles/ARWg0vtgR7RriapTABCkBnng/get-the-latest-from-re-invent-2022 (visited on 06/09/2024)

  14. Ghodrati, S., et al.: Planaria: dynamic architecture fission for spatial multi-tenant acceleration of deep neural networks. In: Proceedings of the IEEE/ACM International Symposium on Microarchitecture (2020)

    Google Scholar 

  15. Gupta, U., et al.: Chasing carbon: the elusive environmental footprint of computing. In: Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (2021)

    Google Scholar 

  16. Gupta, U., et al.: The Architectural Implications of Facebook’s DNN- Based Personalized Recommendation. In: Proceedings of the IEEE Inter- national Symposium on High Performance Computer Architecture (2020)

    Google Scholar 

  17. Hashemi, S., et al.: Understanding the Impact of Precision Quantization on the Accuracy and Energy of Neural Networks (2016). arXiv:1612.03940 [cs]. (Visited on 04/19/2024)

  18. Henderson, P., et al.: Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning. In: CoRR abs/2002.05651 (2020)

    Google Scholar 

  19. HPE Product Carbon Footprint – HPE ProLiant DL345 Gen10 Plus Server Data Sheet. https://www.hpe.com/psnow/doc/a50005151enw. (Visited on 06/09/2024)

  20. https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf, https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf. (Visited on 04/14/2024)

  21. Huang, Y., et al.: GPipe: Efficient training of giant neural networks using pipeline parallelism. In: Proceedings of the Advances in neural information processing systems. Vol. 32 (2019)

    Google Scholar 

  22. ITU AND CLIMATE CHANGE. https://www.itu.int/themes/climate/docs/report/02_ICTandClimateChange.html (visited on 04/14/2024)

  23. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the ACM/IEEE International Symposium on Computer Architecture (2017)

    Google Scholar 

  24. Kang, W.-C., et al.: Learning to Embed Categorical Features with-out Embedding Tables for Recommendation (2021). In: arXiv preprint arXiv:2010.10784

  25. KI-Chip - Amazon Inferentia - AWS. https://aws.amazon.com/de/machine-learning/inferentia/ (visited on 06/09/2024)

  26. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software engineering. In: IEEE Trans. Softw. Eng. 28(8), 721–734 (2002). issn: 0098–5589. https://doi.org/10.1109/TSE.2002.1027796. (Visited on 02/21/2024)

  27. Liu, Z., et al.: LLM-QAT: Data-Free Quantization Aware Training for Large Language Models (2023). arXiv:2305.17888 [cs]. (Visited on 04/19/2024)

  28. Lozhkov, A., et al.: StarCoder 2 and The Stack v2: The Next Generation (2024). arXiv:2402.19173 [cs]. (Visited on 04/14/2024)

  29. Mian, P., et al.: A Systematic Review Process for Software Engineering. In: ()

    Google Scholar 

  30. NVIDIA. Faster Transformer (2021). https://github.com/NVIDIA/FasterTransformer

  31. NVIDIA H100 Tensor Core GPU Datasheet. https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet. (Visited on 04/14/2024)

  32. Patterson, D., et al.: Carbon Emissions and Large Neural Network Training. In: arXiv preprint arXiv:2104.10350 (2021)

  33. Patterson, D., et al.: The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink (2022). https://doi.org/10.48550/ARXIV.2204.05149, https://arxiv.org/abs/2204.05149

  34. Anton Shilov published. Nvidia to Sell 550,000 H100 GPUs for AI in 2023: Report (2023). https://www.tomshardware.com/news/nvidia-to-sell-550000-h100-compute-gpus-in-2023-report. (Visited on 04/14/2024)

  35. Rae, J.W, et al.: Scaling language models: Methods, analysis & insights from training Gopher. In: arXiv preprint arXiv:2112.11446 (2021)

  36. Rajbhandari, S., et al.: Zero: Memory optimizations toward training trillion parameter models. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2020)

    Google Scholar 

  37. Ren, P., et al.: A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions. ACM Comput. Surv. 54(4), 1–34 (2021)

    Google Scholar 

  38. Sachdeva, N., Wu, C.-J., McAuley, J.: SVP-CF: Selection via Proxy for Collaborative Filtering Data (2021). In: arXiv preprint arXiv:2107.04984

  39. Sikand, S., et al.: Green AI quotient: assessing greenness of AI- based software and the way forward. In: 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). Luxembourg, Luxembourg, pp. 1828–1833. IEEE (2023). isbn: 9798350329964. https://doi.org/10.1109/ASE56229.2023.00115. (Visited on 02/21/2024)

  40. Song, Q.: et al.: Towards automated neural interaction discovery for click-through rate prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2020)

    Google Scholar 

  41. Turner, R., et al.: Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020. In: CoRR abs/2104.10201 (2021)

    Google Scholar 

  42. Valavi, E., et al.: Time and the Value of Data. Working papers. Harvard Business School (2020). https://books.google.com/books?id=IFbmzQEACAAJ

  43. Vogels, T., Karinireddy, S.P., Jaggi, M.: PowerSGD: practical low-rank gradient compression for distributed optimization. In: Proceedings of the Advances In Neural Information Processing Systems. vol. 32 (2019)

    Google Scholar 

  44. Wang, Y., et al.: Benchmarking the Performance and Energy Efficiency of AI Accelerators for AI Training (2020). arXiv:1909.06842 [cs]. (Visited on 04/14/2024)

  45. Wu, C.-J., et al.: Sustainable AI: Environmental Implications, Challenges and Opportunities. en. (2022). arXiv:2111.00364 [cs]. http://arxiv.org/abs/2111.00364 (visited on 06/28/2023)

  46. Yin, C., et al.: TT-Rec: tensor train compression for deep learning recommendation models. In: Proceedings of the Conference on Machine Learning and Systems (2021)

    Google Scholar 

  47. Zhang, S., et al.: OPT: Open pre-trained transformer language models (2022). In: arXiv preprint arXiv:2205.01068

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Poth; Investigation: Meemken, Poth; Methodology: Poth; Re- sources: Meemken; Supervision: Poth; Validation: Poth; Visualization: Meemken; Writing - original draft: Meemken; Writing - review & editing: Meemken, Poth

Corresponding author

Correspondence to Alexander Poth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meemken, B., Poth, A. (2024). Eco-Friendly AI: A Guide to Energy-Efficient Techniques Across the AI Life-Cycle. In: Yilmaz, M., Clarke, P., Riel, A., Messnarz, R., Greiner, C., Peisl, T. (eds) Systems, Software and Services Process Improvement. EuroSPI 2024. Communications in Computer and Information Science, vol 2180. Springer, Cham. https://doi.org/10.1007/978-3-031-71142-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71142-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71141-1

  • Online ISBN: 978-3-031-71142-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics