Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Mathematics Framework of Artificial Shifted Population Risk and Its Further Understanding Related to Consistency Regularization

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14941))

  • 1256 Accesses

Abstract

Data augmentation is an important technique in training deep neural networks as it enhances their ability to generalize and remain robust. While data augmentation is commonly used to expand the sample size and act as a consistency regularization term, there is a lack of research on the relationship between them. To address this gap, this paper introduces a more comprehensive mathematical framework for data augmentation. Through this framework, we establish that the expected risk of the shifted population is the sum of the original population risk and a gap term, which can be interpreted as a consistency regularization term. The paper also provides a theoretical understanding of this gap, highlighting its negative effects on the early stages of training. We also propose a method to mitigate these effects. To validate our approach, we conducted experiments using same data augmentation techniques and computing resources under several scenarios, including standard training, out-of-distribution, and imbalanced classification. The results demonstrate that our methods surpass compared methods under all scenarios in terms of generalization ability and convergence stability. We provide our code implementation at the following link: https://github.com/ydlsfhll/ASPR.

X. Yang, S. Deng, S. Liu and Y. Suo—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant Risk Minimization (2020)

    Google Scholar 

  2. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  3. Chen, S., Dobriban, E., Lee, J.H.: A group-theoretic framework for data augmentation. J. Mach. Learn. Res. 21(1), 9885–9955 (2020)

    MathSciNet  Google Scholar 

  4. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  5. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)

    Google Scholar 

  6. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

    Google Scholar 

  8. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. arXiv preprint arXiv:2007.01434 (2020)

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. He, Z., Xie, L., Chen, X., Zhang, Y., Wang, Y., Tian, Q.: Data augmentation revisited: Rethinking the distribution gap between clean and augmented data. arXiv preprint arXiv:1909.09148 (2019)

  11. Huang, W., Yi, M., Zhao, X., Jiang, Z.: Towards the generalization of contrastive self-supervised learning. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=XDJwuEYHhme

  12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  14. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  15. Li, Y., Hu, G., Wang, Y., Hospedales, T., Robertson, N.M., Yang, Y.: DADA: Differentiable Automatic Data Augmentation (2020)

    Google Scholar 

  16. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper_files/paper/2019/file/6add07cf50424b14fdf649da87843d01-Paper.pdf

  17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  18. Homem-de Mello, T.: On rates of convergence for stochastic optimization problems under non-independent and identically distributed sampling. SIAM J. Optim. 19(2), 524–551 (2008)

    Article  MathSciNet  Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  20. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  21. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  22. Tian, K., Lin, C., Lim, S.N., Ouyang, W., Dokania, P., Torr, P.: A continuous mapping for augmentation design. Adv. Neural. Inf. Process. Syst. 34, 13732–13743 (2021)

    Google Scholar 

  23. Vapnik, V.N., Vapnik, V.: Statistical learning theory, vol. 1. Wiley, New York (1998)

    Google Scholar 

  24. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  25. Wang, H., Huang, Z., Wu, X., Xing, E.: Toward learning robust and invariant representations with alignment regularization and data augmentation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1846–1856 (2022)

    Google Scholar 

  26. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  27. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Richard C. Wilson, E.R.H., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC), pp. 87.1–87.12. BMVA Press, September 2016. https://doi.org/10.5244/C.30.87, https://dx.doi.org/10.5244/C.30.87

  28. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115 (2021)

    Article  Google Scholar 

  29. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb

Download references

Acknowledgments

We sincerely thank all reviewers for their efforts to improve the quality of this paper. This work was supported in part by the Guangdong Basic and Applied Basic Research Foundation (project code: 2024A1515011896, 2023A1515012943, and 2022A1515110568), and the Guangzhou Basic and Applied Basic Research Foundation (project code: 2023A04J1683) and Technological Innovation Strategy of Guangdong Province, China (project code: pdjh2022a0030) and Guangdong Province College Students PanDeng Project (project code: 202210561138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 665 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, X., Deng, S., Liu, S., Suo, Y., Wing.W.Y, N., Zhang, J. (2024). A Mathematics Framework of Artificial Shifted Population Risk and Its Further Understanding Related to Consistency Regularization. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14941. Springer, Cham. https://doi.org/10.1007/978-3-031-70341-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70341-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70340-9

  • Online ISBN: 978-3-031-70341-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics