Nothing Special   »   [go: up one dir, main page]

Skip to main content

Disentangled Counterfactual Graph Augmentation Framework for Fair Graph Learning with Information Bottleneck

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14941))

  • 656 Accesses

Abstract

Graph Neural Networks (GNNs) are susceptible to inheriting and even amplifying biases within datasets, subsequently leading to discriminatory decision-making. Our empirical observation reveals that the inconsistent distribution of sensitive attributes conditioned on labels significantly contributes to unfairness. To mitigate this problem, we suggest rectifying this inconsistency of the original dataset through a counterfactual augmentation strategy. Existing methods usually generate counterfactual samples from an entangled representation space, which fail to distinguish the different dependencies on sensitive attributes. Thus, we propose a novel disentangled counterfactual graph augmentation method based on the Information Bottleneck theory, named Fair Disentangled Graph Information Bottleneck (FDGIB). Specifically, FDGIB embeds graphs into two disentangled representation spaces: sensitive-related and sensitive-independent. By satisfying three conditions, FDGIB theoretically guarantees the disentanglement of different sensitive dependencies. We acquire credible counterfactual augmented graphs to facilitate consistency in data distribution and generate fair representations. FDGIB serves as a plug-and-play preprocessing framework that can collaborate with any GNNs. We validate the effectiveness of our model in promoting fairness learning through extensive experiments. Our source code is available at https://github.com/Evanlyf/FDGIB.

L. Zheng and J. Wang—Contribute equally to this work. The appendix is available at the source code link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, C., Lakkaraju, H., Zitnik, M.: Towards a unified framework for fair and stable graph representation learning. In: Uncertainty in Artificial Intelligence, pp. 2114–2124. PMLR (2021)

    Google Scholar 

  2. Agarwal, C., Queen, O., Lakkaraju, H., Zitnik, M.: Evaluating explainability for graph neural networks. Sci. Data 10(1), 144 (2023)

    Article  Google Scholar 

  3. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. arXiv preprint arXiv:1612.00410 (2016)

  4. Belghazi, M.I., et al.: Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062 (2018)

  5. Boratto, L., Fabbri, F., Fenu, G., Marras, M., Medda, G.: Counterfactual graph augmentation for consumer unfairness mitigation in recommender systems. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3753–3757 (2023)

    Google Scholar 

  6. Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., Carin, L.: Club: a contrastive log-ratio upper bound of mutual information. In: International Conference on Machine Learning, pp. 1779–1788. PMLR (2020)

    Google Scholar 

  7. Dai, E., Wang, S.: Learning fair graph neural networks with limited and private sensitive attribute information. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  8. Deniz Kose, O., Shen, Y.: Fairgat: Fairness-aware graph attention networks. arXiv e-prints pp. arXiv–2303 (2023)

    Google Scholar 

  9. Dong, Y., Liu, N., Jalaian, B., Li, J.: Edits: Modeling and mitigating data bias for graph neural networks. In: Proceedings of the ACM Web Conference 2022, pp. 1259–1269 (2022)

    Google Scholar 

  10. Dong, Y., Wang, S., Ma, J., Liu, N., Li, J.: Interpreting unfairness in graph neural networks via training node attribution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 7441–7449 (2023)

    Google Scholar 

  11. Du, M., Yang, F., Zou, N., Hu, X.: Fairness in deep learning: a computational perspective. IEEE Intell. Syst. 36(4), 25–34 (2020)

    Article  Google Scholar 

  12. Feng, S., Wan, H., Wang, N., Luo, M.: Botrgcn: Twitter bot detection with relational graph convolutional networks. In: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 236–239 (2021)

    Google Scholar 

  13. Guo, S., et al.: Self-supervised spatial-temporal bottleneck attentive network for efficient long-term traffic forecasting. In: 2023 IEEE 39th International Conference on Data Engineering (ICDE), pp. 1585–1596. IEEE (2023)

    Google Scholar 

  14. Guo, Z., Li, J., Xiao, T., Ma, Y., Wang, S.: Towards fair graph neural networks via graph counterfactual. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 669–678 (2023)

    Google Scholar 

  15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inform. Process. Systems 30 (2017)

    Google Scholar 

  16. Hu, J., Wang, C., Lin, X.: Spatio-temporal pyramid networks for traffic forecasting. In: Machine Learning and Knowledge Discovery in Databases: Research Track: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part I. (2023). https://doi.org/10.1007/978-3-031-43412-9_20

  17. Jin, J., Li, H., Feng, F., Ding, S., Wu, P., He, X.: Fairly recommending with social attributes: a flexible and controllable optimization approach. Adv. Neural Inform. Process. Syst. 36 (2024)

    Google Scholar 

  18. Jordan, K.L., Freiburger, T.L.: The effect of race/ethnicity on sentencing: examining sentence type, jail length, and prison length. J. Ethnicity Criminal Justice 13(3), 179–196 (2015)

    Article  Google Scholar 

  19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  20. Kose, O.D., Shen, Y.: Fair node representation learning via adaptive data augmentation. arXiv preprint arXiv:2201.08549 (2022)

  21. Kumar, S., Mallik, A., Khetarpal, A., Panda, B.: Influence maximization in social networks using graph embedding and graph neural network. Inf. Sci. 607, 1617–1636 (2022)

    Article  Google Scholar 

  22. Li, H., Wang, X., Zhang, Z., Yuan, Z., Li, H., Zhu, W.: Disentangled contrastive learning on graphs. Adv. Neural. Inf. Process. Syst. 34, 21872–21884 (2021)

    Google Scholar 

  23. Lin, X., Kang, J., Cong, W., Tong, H.: Bemap: Balanced message passing for fair graph neural network. arXiv preprint arXiv:2306.04107 (2023)

  24. Ling, H., Jiang, Z., Luo, Y., Ji, S., Zou, N.: Learning fair graph representations via automated data augmentations. In: The Eleventh International Conference on Learning Representations (2022)

    Google Scholar 

  25. Ma, J., Cui, P., Kuang, K., Wang, X., Zhu, W.: Disentangled graph convolutional networks. In: International Conference on Machine Learning, pp. 4212–4221. PMLR (2019)

    Google Scholar 

  26. Ma, J., Guo, R., Wan, M., Yang, L., Zhang, A., Li, J.: Learning fair node representations with graph counterfactual fairness. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 695–703 (2022)

    Google Scholar 

  27. Pham, D., Zhang, Y.: Counterfactual based reinforcement learning for graph neural networks. Ann. Oper. Res. 1–17 (2022). https://doi.org/10.1007/s10479-022-04978-9

  28. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)

    Google Scholar 

  29. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  30. Wang, X., Chen, H., Tang, S., Wu, Z., Zhu, W.: Disentangled representation learning. arXiv preprint arXiv:2211.11695 (2022)

  31. Wang, Y., Zhao, Y., Dong, Y., Chen, H., Li, J., Derr, T.: Improving fairness in graph neural networks via mitigating sensitive attribute leakage. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1938–1948 (2022)

    Google Scholar 

  32. Weilbach, C.D., Harvey, W., Wood, F.: Graphically structured diffusion models. In: International Conference on Machine Learning, pp. 36887–36909 (2023)

    Google Scholar 

  33. Wu, J., et al.: Disenkgat: knowledge graph embedding with disentangled graph attention network. In: Proceedings of the 30th ACM International Conference on Information and Knowledge Management, pp. 2140–2149 (2021)

    Google Scholar 

  34. Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., Wang, M.: Learning fair representations for recommendation: a graph-based perspective. In: Proceedings of the Web Conference 2021, pp. 2198–2208 (2021)

    Google Scholar 

  35. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

    Google Scholar 

  36. Zhang, W., Zhang, L., Pfoser, D., Zhao, L.: Disentangled dynamic graph deep generation. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 738–746. SIAM (2021)

    Google Scholar 

  37. Zhao, H., Gordon, G.J.: Inherent tradeoffs in learning fair representations. J. Mach. Learn. Res. 23(1), 2527–2552 (2022)

    MathSciNet  Google Scholar 

  38. Zhao, Q., Wu, Z., Zhang, Z., Zhou, J.: Long-tail augmented graph contrastive learning for recommendation. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds.) Machine Learning and Knowledge Discovery in Databases: Research Track: European Conference, ECML PKDD 2023, Turin, Italy, September 18–22, 2023, Proceedings, Part IV, pp. 387–403. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-43421-1_23

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (No. 62192781, No. 62272374), the Natural Science Foundation of Shaanxi Province (2024JC-JCQN-62), the National Nature Science Foundation of China (No. 62202367, No. 62250009, No. 62137002), Project of China Knowledge Center for Engineering Science and Technology, and Project of Chinese academy of engineering “The Online and Offline Mixed Educational Service System for ‘The Belt and Road’ Training in MOOC China”, the Fundamental Research Funds of XJTU (No. xpt012024003), State Grid Shaanxi Electric Power Co., LTD. Science and Technology Project (No. 5226PX240003), State Grid Shaanxi Electric Power Co., LTD. Grid Digitization Project (No. B326PX230001). We would like to express our gratitude for the support of K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minnan Luo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1138 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, L., Wang, J., Liu, H., Luo, M. (2024). Disentangled Counterfactual Graph Augmentation Framework for Fair Graph Learning with Information Bottleneck. In: Bifet, A., Davis, J., Krilavičius, T., Kull, M., Ntoutsi, E., Žliobaitė, I. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14941. Springer, Cham. https://doi.org/10.1007/978-3-031-70341-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70341-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70340-9

  • Online ISBN: 978-3-031-70341-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics