Nothing Special   »   [go: up one dir, main page]

Skip to main content

Convolutional Neural Networks for Autonomous UAV Navigation in GPS-Denied Environments

  • Conference paper
  • First Online:
Technological Innovation for Human-Centric Systems (DoCEIS 2024)

Abstract

This work addresses the challenge of autonomous Unmanned Aerial Vehicle (UAV) navigation in Global Positioning System (GPS)-denied environments by proposing a new approach that is an amalgamation of data-driven and model-based philosophies. The proposed method exploits datasets acquired from existing frameworks like the Generalized Trust Region Sub-problem (GTRS) and the Weighted Least Squares (WLS). These datasets are then used to feed the proposed Convolutional Neural Network (CNN) specially tailored to create models for UAV navigation. Afterwards, these models are used to make predictions of an optimal trajectory. The obtained numerical results reveal that the proposed CNN reveals improvements in accuracy and robustness to noise when compared to other Machine Learning approaches, while reducing the required training time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Innocenti, E., Agostini, G., Giuliano, R.: UAVs for medicine delivery in a smart city using fiducial markers. Information 13(10) (2022)

    Google Scholar 

  2. Máthé, K., Buşoniu, L.: Vision and control for UAVs: a survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors 15(7), 14887–14916 (2015)

    Article  Google Scholar 

  3. Matos-Carvalho, J.P., et al.: Static and dynamic algorithms for terrain classification in UAV aerial imagery. Remote Sens. 11(21), 2501 (2019)

    Article  Google Scholar 

  4. Tomic, T., et al.: Toward a fully autonomous UAV: research platform for indoor and outdoor urban search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

    Article  Google Scholar 

  5. Khan, S.K., Naseem, U., Siraj, H., Razzak, I., Imran, M.: The role of unmanned aerial vehicles and mmWave in 5G: recent advances and challenges. Trans. Emerg. Telecommun. Technol. 32(7), e4241 (2021)

    Article  Google Scholar 

  6. Correia, S.D., Fé, J., Tomic, S., Beko, M.: Drones as sound sensors for energy-based acoustic tracking on wildfire environments. In: Camarinha-Matos, L.M., Heijenk, G., Katkoori, S., Strous, L. (eds.) Internet of Things. Technology and Applications, pp. 109–125. Springer International Publishing (2022). https://doi.org/10.1007/978-3-030-96466-5_8

  7. Salvado, A.B., et al.: Semantic navigation mapping from aerial multispectral imagery. In: 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), pp. 1192–1197 (2019)

    Google Scholar 

  8. Pedro, D., Mora, A., Carvalho, J., Azevedo, F., Fonseca, J.: ColANet: A UAV collision avoidance dataset. In: Camarinha-Matos, L.M., Farhadi, N., Lopes, F., Pereira, H. (eds.) DoCEIS 2020. IAICT, vol. 577, pp. 53–62. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45124-0_5

    Chapter  Google Scholar 

  9. Shen, Y., Hwang, B., Jeong, J.P.: Particle filtering-based indoor positioning system for beacon tag tracking. IEEE Access 8, 226445–226460 (2020)

    Article  Google Scholar 

  10. Matos-Carvalho, J.P., Santos, R., Tomic, S., Beko, M.: GTRS-based algorithm for UAV navigation in indoor environments employing range measurements and odometry. IEEE Access 9, 89120–89132 (2021)

    Article  Google Scholar 

  11. Santos, R., Matos-Carvalho, J.P., Tomic, S., Beko, M.: Wls algorithm for UAV navigation in satellite-less environments. IET Wirel. Sens. Syst. 12(3), 93–102 (2022)

    Article  Google Scholar 

  12. Santos, R., Matos-Carvalho, J.P., Tomic, S., Beko, M., Correia, S.D.: Applying deep neural networks to improve UAV navigation in satellite-less environments. In: 2022 International Young Engineers Forum (YEF-ECE), pp. 63–68 (2022)

    Google Scholar 

  13. Yang, B., Li, J., Shao, Z., Zhang, H.: Robust UWB indoor localization for NLoS scenes via learning spatial-temporal features. IEEE Sens. J. 22(8), 7990–8000 (2022)

    Article  Google Scholar 

  14. Rappaport, T.S.: Wireless Communications – Principles and Practice. Prentice Hall (1996)

    Google Scholar 

  15. Tomic, S., Beko, M., Dinis, R.: RSS-based localization in wireless sensor networks using convex relaxation: noncooperative and cooperative schemes. IEEE Trans. Veh. Technol. 64(5), 2037–2050 (2015)

    Article  Google Scholar 

  16. Comuniello, A., Angelis, A., Moschitta, A., Carbone, P.: Using bluetooth low energy technology to perform ToF-based positioning. Electronics 11, 111 (2021)

    Article  Google Scholar 

  17. Hashem, O., Harras, K., Youssef, M.: Accurate indoor positioning using IEEE 802.11mc round trip time. Pervasive Mob. Comput. 75, 101416 (2021)

    Article  Google Scholar 

  18. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory, 1st edn. Prentice Hall, Upper Saddle River (1993)

    Google Scholar 

  19. Tomic, S., Beko, M., Dinis, R.: 3-D target localization in wireless sensor networks using RSS and AoA measurements. IEEE Trans. Veh. Technol. 66(4), 3197–3210 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This research was partially funded by Fundação para a Ciência e a Tecnologia under Projects UIDB/04111/2020, 2021.04180.CEECIND, UIDB/50008/2020, CEECINST/00147/2018/CP1498/CT0015 and ROBUST EXPL/EEIEEE/0776/2021 and by the European Union’s Horizon Europe Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 101086387, as well as Instituto Lusófono de Investigação e Desenvolvimento (ILIND) under Project COFAC/ILIND/COPELABS/1/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Serras Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, R.S., Matos-Carvalho, J.P., Tomic, S., Beko, M., Calafate, C.T. (2024). Convolutional Neural Networks for Autonomous UAV Navigation in GPS-Denied Environments. In: Camarinha-Matos, L.M., Ferrada, F. (eds) Technological Innovation for Human-Centric Systems. DoCEIS 2024. IFIP Advances in Information and Communication Technology, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-031-63851-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63851-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63850-3

  • Online ISBN: 978-3-031-63851-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics