Abstract
A secure multiparty computation (MPC) allows several parties to compute a function over their inputs while keeping their inputs private. In its basic setting, the protocol involves only parties that hold inputs. In distributed MPC, there are also external servers who perform a distributed protocol that executes the needed computation, without learning information on the inputs and outputs. Here we propose distributed protocols for several fundamental MPC functionalities. We begin with a Distributed Scalar Product (DSP) protocol for computing scalar products of private vectors. We build upon DSP in designing various protocols for Oblivious Transfer (OT): k-out-of-N OT, Priced OT, and Generalized OT. We also use DSP for Oblivious Polynomial Evaluation (OPE) and Oblivious Multivariate Polynomial Evaluation (OMPE). All those problems involve a sender and a receiver that hold private vectors and they wish to compute their scalar product. However, in each of these problems the receiver must submit a vector of a specified form. Hence, a crucial ingredient in our protocols is a sub-protocol for validating that the receiver’s vector complies with the relevant restrictions, without learning anything else on that vector. Therefore, while previous studies presented distributed protocols for 1-out-of-N OT and OPE, our protocols are the first ones that are secure against malicious receivers. Our distributed protocols for the other OT variants and for OMPE are the first ones that handle such problems. Our protocols offer information-theoretic security, under the assumption that the servers are semi-honest and have an honest majority, and they are very efficient.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In our discussion of related work we replace the original parameter notations with the ones that we used in the present work, for consistency and clarity.
References
Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_8
Alwen, J., Katz, J., Lindell, Y., Persiano, G., shelat, A., Visconti, I.: Collusion-free multiparty computation in the mediated model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 524–540. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_31
Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_28
Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: On unconditionally secure distributed oblivious transfer. J. Cryptol. 20(3), 323–373 (2007)
Brassard, G., Crepeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_17
Catrina, O., Kerschbaum, F.: Fostering the uptake of secure multiparty computation in e-commerce. In: ARES, pp. 693–700 (2008)
Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998)
Cianciullo, L., Ghodosi, H.: Unconditionally secure oblivious polynomial evaluation: a survey and new results. J. Comput. Sci. Technol. 37(2), 443–458 (2022)
Corniaux, C.L.F., Ghodosi, H.: Scalar product-based distributed oblivious transfer. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 338–354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0_23
Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_23
Dery, L., Tassa, T., Yanai, A.: Fear not, vote truthfully: secure multiparty computation of score based rules. Expert Syst. Appl. 168, 114434 (2021)
Dery, L., Tassa, T., Yanai, A., Zamarin, A.: Demo: a secure voting system for score based elections. In: CCS, pp. 2399–2401 (2021)
Du, W., Atallah, M.J.: Privacy-preserving cooperative statistical analysis. In: ACSAC, pp. 102–110 (2001)
Du, W., Zhan, J.Z.: A practical approach to solve secure multi-party computation problems. In: NSPW, pp. 127–135 (2002)
Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)
Ben Horin, A., Tassa, T.: Privacy preserving collaborative filtering by distributed mediation. In: RecSys, pp. 332–341 (2021)
Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: ISTCS, pp. 174–184 (1997)
Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive (2011). 272
Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)
Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: CCS, pp. 818–829 (2016)
Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)
Li, H.-D., Yang, X., Feng, D., Li, B.: Distributed oblivious function evaluation and its applications. J. Comput. Sci. Technol. 19(6), 942–947 (2004)
Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC, pp. 245–254 (1999)
Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_16
Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure distributed oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36231-2_31
Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-81, Aiken Computation Laboratory, Harvard University (1981)
Schneider, J.: Lean and fast secure multi-party computation: minimizing communication and local computation using a helper. In: SECRYPT, pp. 223–230 (2016)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shmueli, E., Tassa, T.: Mediated secure multi-party protocols for collaborative filtering. ACM Trans. Intell. Syst. Technol. 11, 1–25 (2020)
Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptogr. 58(1), 11–21 (2011)
Tassa, T., Dyn, N.: Multipartite secret sharing by bivariate interpolation. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 288–299. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_25
Tassa, T., Grinshpoun, T., Yanai, A.: PC-SyncBB: a privacy preserving collusion secure DCOP algorithm. Artif. Intell. 297, 103501 (2021)
Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate polynomials. J. Math. Cryptol. 7(1), 1–29 (2013)
Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: SIGKDD, pp. 639–644 (2002)
Yao, A.C.: Protocols for secure computation. In: FOCS, pp. 160–164 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ben Arie, A., Tassa, T. (2024). Distributed Protocols for Oblivious Transfer and Polynomial Evaluation. In: Chattopadhyay, A., Bhasin, S., Picek, S., Rebeiro, C. (eds) Progress in Cryptology – INDOCRYPT 2023. INDOCRYPT 2023. Lecture Notes in Computer Science, vol 14460. Springer, Cham. https://doi.org/10.1007/978-3-031-56235-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-56235-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56234-1
Online ISBN: 978-3-031-56235-8
eBook Packages: Computer ScienceComputer Science (R0)