Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advancing Requirements Engineering Through Generative AI: Assessing the Role of LLMs

  • Chapter
  • First Online:
Generative AI for Effective Software Development

Abstract

Requirements Engineering (RE) is a critical phase in software development including the elicitation, analysis, specification, and validation of software requirements. Despite the importance of RE, it remains a challenging process due to the complexities of communication, uncertainty in the early stages, and inadequate automation support. In recent years, large language models (LLMs) have shown significant promise in diverse domains, including natural language processing, code generation, and program understanding. This chapter explores the potential of LLMs in driving RE processes, aiming to improve the efficiency and accuracy of requirements-related tasks. We propose key directions and SWOT analysis for research and development in using LLMs for RE, focusing on the potential for requirements elicitation, analysis, specification, and validation. We further present the results from a preliminary evaluation, in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://chat.openai.com/.

  2. 2.

    https://bard.google.com/.

References

  1. Abualhaija, S., Arora, C., Sleimi, A., et al.: Automated question answering for improved understanding of compliance requirements: A multi-document study. In: International Requirements Engineering Conference (RE’22) (2022)

    Google Scholar 

  2. Ahmad, K., Abdelrazek, M., Arora, C., et al.: Requirements engineering framework for human-centered artificial intelligence software systems. Appl. Soft Comput. 143, 110455 (2023a)

    Article  Google Scholar 

  3. Ahmad, K., Abdelrazek, M., Arora, C., et al.: Requirements engineering for artificial intelligence systems: A systematic mapping study. Inf. Software Technol. 158, 107176 (2023b)

    Article  Google Scholar 

  4. Akter, S., McCarthy, G., Sajib, S., et al.: Algorithmic bias in data-driven innovation in the age of AI. Int. J. Inf. Manag. 60, 102387 (2021)

    Article  Google Scholar 

  5. Arora, C., Sabetzadeh, M., Briand, L., et al.: Automated checking of conformance to requirements templates using natural language processing. IEEE Trans. Software Eng. (TSE’15) 41(10), 944–968 (2015)

    Google Scholar 

  6. Arora, C., Sabetzadeh, M., Briand, L., et al.: Automated extraction and clustering of requirements glossary terms. IEEE Trans. Software Eng. 43(10), 918–945 (2017)

    Article  Google Scholar 

  7. Borji, A.: A categorical archive of chatgpt failures. Preprint (2023). arXiv:230203494

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: Pre-training of deep bidirectional transformers for language understanding (2018). arXiv:181004805

    Google Scholar 

  9. Ezzini, S., Abualhaija, S., Arora, C., et al.: Automated handling of anaphoric ambiguity in requirements: A multi-solution study. In: 2022 IEEE/ACM 44rd International Conference on Software Engineering (2022)

    Google Scholar 

  10. Gorschek, T., Wohlin, C.: Requirements abstraction model. Requir. Eng. 11, 79–101 (2006)

    Article  Google Scholar 

  11. Hariri, W.: Unlocking the potential of chatgpt: A comprehensive exploration of its applications, advantages, limitations, and future directions in natural language processing (2023). https://doi.org/10.48550/arXiv.2304.02017

  12. Hidellaarachchi, D., Grundy, J., Hoda, R., et al.: The effects of human aspects on the requirements engineering process: A systematic literature review. IEEE Trans. Software Eng. 48(6), 2105–2127 (2022)

    Article  Google Scholar 

  13. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 3rd edn. (2020). https://web.stanford.edu/~jurafsky/slp3/ (last visited 2021-06-04)

  14. Laplante, P.A., Kassab, M.H.: Requirements Engineering for Software and Systems. CRC Press, Boca Raton (2022)

    Book  Google Scholar 

  15. Luitel, D., Hassani, S., Sabetzadeh, M.: Using language models for enhancing the completeness of natural-language requirements. In: Requirements Engineering: Foundation for Software Quality: 29th International Working Conference (2023)

    Google Scholar 

  16. Ma, H., Zhang, C., Bian, Y., et al.: Fairness-guided few-shot prompting for large language models. Preprint (2023). arXiv:230313217

    Google Scholar 

  17. Mavin, A., Wilkinson, P., Harwood, A., et al.: Easy approach to requirements syntax (ears). In: 2009 17th IEEE International Requirements Engineering Conference, pp. 317–322. IEEE (2009)

    Google Scholar 

  18. Pan, W., Chen, Q., Xu, X., et al.: A preliminary evaluation of ChatGPT for zero-shot dialogue understanding. Preprint (2023). arXiv:230404256

    Google Scholar 

  19. Pohl, K.: Requirements Engineering, 1st edn. Springer, New York (2010)

    Book  Google Scholar 

  20. Robertson, J., Robertson, S.: Volere. Requirements Specification Templates (2000)

    Google Scholar 

  21. Sawyer, P., Sommerville, I., Viller, S.: Capturing the benefits of requirements engineering. IEEE Software 16(2), 78–85 (1999)

    Article  Google Scholar 

  22. Sutcliffe, A., Sawyer, P.: Requirements elicitation: Towards the unknown unknowns. In: International Requirements Engineering Conference (RE’13) (2013)

    Google Scholar 

  23. Thoppilan, R., De Freitas, D., Hall, J., et al.: Lamda: Language models for dialog applications. Preprint (2022). arXiv:220108239

    Google Scholar 

  24. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Software Specifications, 1st edn. Wiley, New York (2009)

    Google Scholar 

  25. Wei, J., Wang, X., Schuurmans, D., et al.: Chain of thought prompting elicits reasoning in large language models (2022). CoRR abs/2201.11903. https://arxiv.org/abs/2201.11903

  26. White, J., Fu, Q., Hays, S., et al.: A prompt pattern catalog to enhance prompt engineering with chatgpt. Preprint (2023). arXiv:230211382

    Google Scholar 

  27. Yao, S., Yu, D., Zhao, J., et al.: Tree of thoughts: Deliberate problem solving with large language models. Preprint (2023). arXiv:230510601

    Google Scholar 

  28. Zamani, K., Zowghi, D., Arora, C.: Machine learning in requirements engineering: A mapping study. In: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pp 116–125. IEEE (2021)

    Google Scholar 

  29. Zhang, X., Liu, L., Wang, Y., et al.: Personagen: A tool for generating personas from user feedback. In: 2023 IEEE 31st International Requirements Engineering Conference (RE), pp 353–354. IEEE (2023)

    Google Scholar 

  30. Zhao, L., Alhoshan, W., Ferrari, A., et al.: Natural language processing for requirements engineering: A systematic mapping study. ACM Comput. Surv. (CSUR) 54(3), 1–41 (2021)

    Google Scholar 

  31. Zheng, L., Chiang, W.L., Sheng, Y., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. Preprint (2023). arXiv:230605685

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arora, C., Grundy, J., Abdelrazek, M. (2024). Advancing Requirements Engineering Through Generative AI: Assessing the Role of LLMs. In: Nguyen-Duc, A., Abrahamsson, P., Khomh, F. (eds) Generative AI for Effective Software Development. Springer, Cham. https://doi.org/10.1007/978-3-031-55642-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55642-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55641-8

  • Online ISBN: 978-3-031-55642-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics