Abstract
Requirements Engineering (RE) is a critical phase in software development including the elicitation, analysis, specification, and validation of software requirements. Despite the importance of RE, it remains a challenging process due to the complexities of communication, uncertainty in the early stages, and inadequate automation support. In recent years, large language models (LLMs) have shown significant promise in diverse domains, including natural language processing, code generation, and program understanding. This chapter explores the potential of LLMs in driving RE processes, aiming to improve the efficiency and accuracy of requirements-related tasks. We propose key directions and SWOT analysis for research and development in using LLMs for RE, focusing on the potential for requirements elicitation, analysis, specification, and validation. We further present the results from a preliminary evaluation, in this context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abualhaija, S., Arora, C., Sleimi, A., et al.: Automated question answering for improved understanding of compliance requirements: A multi-document study. In: International Requirements Engineering Conference (RE’22) (2022)
Ahmad, K., Abdelrazek, M., Arora, C., et al.: Requirements engineering framework for human-centered artificial intelligence software systems. Appl. Soft Comput. 143, 110455 (2023a)
Ahmad, K., Abdelrazek, M., Arora, C., et al.: Requirements engineering for artificial intelligence systems: A systematic mapping study. Inf. Software Technol. 158, 107176 (2023b)
Akter, S., McCarthy, G., Sajib, S., et al.: Algorithmic bias in data-driven innovation in the age of AI. Int. J. Inf. Manag. 60, 102387 (2021)
Arora, C., Sabetzadeh, M., Briand, L., et al.: Automated checking of conformance to requirements templates using natural language processing. IEEE Trans. Software Eng. (TSE’15) 41(10), 944–968 (2015)
Arora, C., Sabetzadeh, M., Briand, L., et al.: Automated extraction and clustering of requirements glossary terms. IEEE Trans. Software Eng. 43(10), 918–945 (2017)
Borji, A.: A categorical archive of chatgpt failures. Preprint (2023). arXiv:230203494
Devlin, J., Chang, M.W., Lee, K., et al.: BERT: Pre-training of deep bidirectional transformers for language understanding (2018). arXiv:181004805
Ezzini, S., Abualhaija, S., Arora, C., et al.: Automated handling of anaphoric ambiguity in requirements: A multi-solution study. In: 2022 IEEE/ACM 44rd International Conference on Software Engineering (2022)
Gorschek, T., Wohlin, C.: Requirements abstraction model. Requir. Eng. 11, 79–101 (2006)
Hariri, W.: Unlocking the potential of chatgpt: A comprehensive exploration of its applications, advantages, limitations, and future directions in natural language processing (2023). https://doi.org/10.48550/arXiv.2304.02017
Hidellaarachchi, D., Grundy, J., Hoda, R., et al.: The effects of human aspects on the requirements engineering process: A systematic literature review. IEEE Trans. Software Eng. 48(6), 2105–2127 (2022)
Jurafsky, D., Martin, J.H.: Speech and Language Processing, 3rd edn. (2020). https://web.stanford.edu/~jurafsky/slp3/ (last visited 2021-06-04)
Laplante, P.A., Kassab, M.H.: Requirements Engineering for Software and Systems. CRC Press, Boca Raton (2022)
Luitel, D., Hassani, S., Sabetzadeh, M.: Using language models for enhancing the completeness of natural-language requirements. In: Requirements Engineering: Foundation for Software Quality: 29th International Working Conference (2023)
Ma, H., Zhang, C., Bian, Y., et al.: Fairness-guided few-shot prompting for large language models. Preprint (2023). arXiv:230313217
Mavin, A., Wilkinson, P., Harwood, A., et al.: Easy approach to requirements syntax (ears). In: 2009 17th IEEE International Requirements Engineering Conference, pp. 317–322. IEEE (2009)
Pan, W., Chen, Q., Xu, X., et al.: A preliminary evaluation of ChatGPT for zero-shot dialogue understanding. Preprint (2023). arXiv:230404256
Pohl, K.: Requirements Engineering, 1st edn. Springer, New York (2010)
Robertson, J., Robertson, S.: Volere. Requirements Specification Templates (2000)
Sawyer, P., Sommerville, I., Viller, S.: Capturing the benefits of requirements engineering. IEEE Software 16(2), 78–85 (1999)
Sutcliffe, A., Sawyer, P.: Requirements elicitation: Towards the unknown unknowns. In: International Requirements Engineering Conference (RE’13) (2013)
Thoppilan, R., De Freitas, D., Hall, J., et al.: Lamda: Language models for dialog applications. Preprint (2022). arXiv:220108239
van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Software Specifications, 1st edn. Wiley, New York (2009)
Wei, J., Wang, X., Schuurmans, D., et al.: Chain of thought prompting elicits reasoning in large language models (2022). CoRR abs/2201.11903. https://arxiv.org/abs/2201.11903
White, J., Fu, Q., Hays, S., et al.: A prompt pattern catalog to enhance prompt engineering with chatgpt. Preprint (2023). arXiv:230211382
Yao, S., Yu, D., Zhao, J., et al.: Tree of thoughts: Deliberate problem solving with large language models. Preprint (2023). arXiv:230510601
Zamani, K., Zowghi, D., Arora, C.: Machine learning in requirements engineering: A mapping study. In: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pp 116–125. IEEE (2021)
Zhang, X., Liu, L., Wang, Y., et al.: Personagen: A tool for generating personas from user feedback. In: 2023 IEEE 31st International Requirements Engineering Conference (RE), pp 353–354. IEEE (2023)
Zhao, L., Alhoshan, W., Ferrari, A., et al.: Natural language processing for requirements engineering: A systematic mapping study. ACM Comput. Surv. (CSUR) 54(3), 1–41 (2021)
Zheng, L., Chiang, W.L., Sheng, Y., et al.: Judging llm-as-a-judge with mt-bench and chatbot arena. Preprint (2023). arXiv:230605685
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Arora, C., Grundy, J., Abdelrazek, M. (2024). Advancing Requirements Engineering Through Generative AI: Assessing the Role of LLMs. In: Nguyen-Duc, A., Abrahamsson, P., Khomh, F. (eds) Generative AI for Effective Software Development. Springer, Cham. https://doi.org/10.1007/978-3-031-55642-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-55642-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-55641-8
Online ISBN: 978-3-031-55642-5
eBook Packages: Computer ScienceComputer Science (R0)