Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhancing Writer Identification with Local Gradient Histogram Analysis

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Volume 7 (SCA 2023)

Abstract

Writer identification is a critical aspect of document analysis and has significant implications in various domains, including forensics, authentication, and historical research. In this article, we propose a novel approach for writer identification using gradient angle histograms collected from neighboring pixels. By calculating the histogram of gradient angles from different locations of neighboring pixels, we effectively capture the writer’s unique style and nuances. Our experimental study demonstrates promising results on the two datasets BFL and CERUG, showcasing the potential of our proposed technique in improving the state-of-the-art methods in writer identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, F., Gattal, A., Djeddi, C., Siddiqi, I., Bensefia, A., Saoudi, K.: Texture feature column scheme for single-and multi-script writer identification. IET Biometrics 10(2), 179–193 (2021)

    Article  Google Scholar 

  2. Abdi, M.N., Khemakhem, M.: A model-based approach to offline text-independent arabic writer identification and verification. Pattern Recogn. 48(5), 1890–1903 (2015)

    Article  Google Scholar 

  3. Bahram, T.: A texture-based approach for offline writer identification. J. King Saud Univ. Comput. Inf. Sci. 34(8), 5204–5222 (2022)

    Google Scholar 

  4. Bendaoud, N., Hannad, Y., Samaa, A., El Kettani, M.E.Y.: Effect of the sub-graphemes’ size on the performance of off-line Arabic writer identification. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya, N. (eds.) Big Data, Cloud and Applications: Third International Conference (BDCA 2018). CCIS, vol. 872, pp. 512–522. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96292-4_40

  5. Bennour, A., Djeddi, C., Gattal, A., Siddiqi, I., Mekhaznia, T.: Handwriting based writer recognition using implicit shape codebook. Forensic Sci. Int. 301, 91–100 (2019)

    Article  Google Scholar 

  6. Bensefia, A., Paquet, T., Heutte, L.: A writer identification and verification system. Pattern Recogn. Lett. 26(13), 2080–2092 (2005)

    Article  Google Scholar 

  7. Bertolini, D., Oliveira, L.S., Justino, E., Sabourin, R.: Texture-based descriptors for writer identification and verification. Expert Syst. Appl. 40(6), 2069–2080 (2013)

    Article  Google Scholar 

  8. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 701–717 (2007)

    Article  Google Scholar 

  9. Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 701–717 (2007)

    Article  Google Scholar 

  10. Chahi, A., Ruichek, Y., Touahni, R., et al.: Block wise local binary count for off-line text-independent writer identification. Expert Syst. Appl. 93, 1–14 (2018)

    Article  Google Scholar 

  11. Chahi, A., Ruichek, Y., Touahni, R., et al.: Local gradient full-scale transform patterns based off-line text-independent writer identification. Appl. Soft Comput. 92, 106277 (2020)

    Google Scholar 

  12. Christlein, V., Bernecker, D., Maier, A., Angelopoulou, E.: Offline writer identification using convolutional neural network activation features. In: Gall, J., Gehler, P., Leibe, B. (eds.) Pattern Recognition: 37th German Conference, GCPR 2015, Aachen, pp. 540–552. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_45

  13. Christlein, V., Gropp, M., Fiel, S., Maier, A.: Unsupervised feature learning for writer identification and writer retrieval. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 991–997. IEEE (2017)

    Google Scholar 

  14. Christlein, V., Maier, A.: Encoding CNN activations for writer recognition. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 169–174. IEEE (2018)

    Google Scholar 

  15. Djeddi, C., Meslati, L.S., Siddiqi, I., Ennaji, A., El Abed, H., Gattal, A.: Evaluation of texture features for offline Arabic writer identification. In: 2014 11th IAPR International Workshop on Document Analysis Systems, pp. 106–110. IEEE (2014)

    Google Scholar 

  16. Freitas, C., Oliveira, L.S., Sabourin, R., Bortolozzi, F.: Brazilian forensic letter database. In: 11th International Workshop on Frontiers on Handwriting Recognition, Montreal (2008)

    Google Scholar 

  17. Hannad, Y., Siddiqi, I., Djeddi, C., El-Kettani, M.E.Y.: Improving arabic writer identification using score-level fusion of textural descriptors. IET Biometrics 8(3), 221–229 (2019)

    Article  Google Scholar 

  18. Hannad, Y., Siddiqi, I., El Kettani, M.E.Y.: Writer identification using texture descriptors of handwritten fragments. Expert Syst. Appl. 47, 14–22 (2016)

    Article  Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. He, S., Schomaker, L.: Writer identification using curvature-free features. Pattern Recogn. 63, 451–464 (2017)

    Article  Google Scholar 

  21. He, S., Schomaker, L.: Fragnet: writer identification using deep fragment networks. IEEE Trans. Inf. Forens. Secur. 15, 3013–3022 (2020)

    Article  Google Scholar 

  22. He, S., Wiering, M., Schomaker, L.: Junction detection in handwritten documents and its application to writer identification. Pattern Recogn. 48(12), 4036–4048 (2015)

    Article  Google Scholar 

  23. Khalifa, E., Al-Maadeed, S., Tahir, M.A., Bouridane, A., Jamshed, A.: Off-line writer identification using an ensemble of grapheme codebook features. Pattern Recogn. Lett. 59, 18–25 (2015)

    Article  Google Scholar 

  24. Khan, F.A., Tahir, M.A., Khelifi, F., Bouridane, A., Almotaeryi, R.: Robust off-line text independent writer identification using bagged discrete cosine transform features. Exp. Syst. Appl. 71, 404–415 (2017)

    Article  Google Scholar 

  25. Lazrak, S., Semma, A., El Kaab, N.A., El Kettani, M.E.Y., Mentagui, D.: Writer identification using textural features. In: ITM Web of Conferences, vol. 43, p. 01027. EDP Sciences (2022)

    Google Scholar 

  26. Pinhelli, F., Britto, Jr., A.S., Oliveira, L.S., Costa, Y.M., Bertolini, D.: Single-sample writers–“document filter" and their impacts on writer identification. arXiv preprint arXiv:2005.08424 (2020)

  27. Rehman, A., Naz, S., Razzak, M.I., Hameed, I.A.: Automatic visual features for writer identification: a deep learning approach. IEEE Access 7, 17149–17157 (2019)

    Article  Google Scholar 

  28. Semma, A., Hannad, Y., El Kettani, M.E.Y.: Impact of the CNN patch size in the writer identification. In: Networking, Intelligent Systems and Security, pp. 103–114. Springer, Cham (2022). https://doi.org/10.1007/978-981-16-3637-0_8

  29. Semma, A., Hannad, Y., Siddiqi, I., Djeddi, C., El Kettani, M.E.Y.: Writer identification using deep learning with fast keypoints and harris corner detector. Expert Syst. Appl. 184, 115473 (2021). https://doi.org/10.1016/j.eswa.2021.115473

    Article  Google Scholar 

  30. Semma, A., Hannad, Y., Siddiqi, I., Lazrak, S., Kettani, M.E.Y.E.: Feature learning and encoding for multi-script writer identification. Int. J. Doc. Anal. Recogn. 25(2), 79–93 (2022). 10.1007/s10032-022-00394-8

    Google Scholar 

  31. Semma, A., Lazrak, S., Hannad, Y., Boukhani, M., El Kettani, Y.: Writer identification: the effect of image resizing on CNN performance. Int. Archiv. Photogram. Remote Sens. Spatial Inf. Sci. 46, 501–507 (2021)

    Google Scholar 

  32. Semma, A., Lazrak, S., Hannad, Y., El Kettani, M.E.Y.: Writer identification using vlad encoding of the histogram of gradient angle distribution. E3S Web Conf. 351, 01073 (2022). EDP Sciences

    Google Scholar 

  33. Siddiqi, I., Vincent, N.: Writer identification in handwritten documents. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 1, pp. 108–112. IEEE (2007)

    Google Scholar 

  34. Siddiqi, I., Vincent, N.: Text independent writer recognition using redundant writing patterns with contour-based orientation and curvature features. Pattern Recogn. 43(11), 3853–3865 (2010)

    Article  Google Scholar 

  35. Singh, P., Roy, P.P., Raman, B.: Writer identification using texture features: a comparative study. Comput. Electric. Eng. 71, 1–12 (2018)

    Article  Google Scholar 

  36. Wu, X., Tang, Y., Bu, W.: Offline text-independent writer identification based on scale invariant feature transform. IEEE Trans. Inf. Forens. Secur. 9(3), 526–536 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelillah Semma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Semma, A., Lazrak, S., Hannad, Y. (2024). Enhancing Writer Identification with Local Gradient Histogram Analysis. In: Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R. (eds) Innovations in Smart Cities Applications Volume 7. SCA 2023. Lecture Notes in Networks and Systems, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-031-54376-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54376-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54375-3

  • Online ISBN: 978-3-031-54376-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics