Abstract
Writer identification is a critical aspect of document analysis and has significant implications in various domains, including forensics, authentication, and historical research. In this article, we propose a novel approach for writer identification using gradient angle histograms collected from neighboring pixels. By calculating the histogram of gradient angles from different locations of neighboring pixels, we effectively capture the writer’s unique style and nuances. Our experimental study demonstrates promising results on the two datasets BFL and CERUG, showcasing the potential of our proposed technique in improving the state-of-the-art methods in writer identification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, F., Gattal, A., Djeddi, C., Siddiqi, I., Bensefia, A., Saoudi, K.: Texture feature column scheme for single-and multi-script writer identification. IET Biometrics 10(2), 179–193 (2021)
Abdi, M.N., Khemakhem, M.: A model-based approach to offline text-independent arabic writer identification and verification. Pattern Recogn. 48(5), 1890–1903 (2015)
Bahram, T.: A texture-based approach for offline writer identification. J. King Saud Univ. Comput. Inf. Sci. 34(8), 5204–5222 (2022)
Bendaoud, N., Hannad, Y., Samaa, A., El Kettani, M.E.Y.: Effect of the sub-graphemes’ size on the performance of off-line Arabic writer identification. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya, N. (eds.) Big Data, Cloud and Applications: Third International Conference (BDCA 2018). CCIS, vol. 872, pp. 512–522. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96292-4_40
Bennour, A., Djeddi, C., Gattal, A., Siddiqi, I., Mekhaznia, T.: Handwriting based writer recognition using implicit shape codebook. Forensic Sci. Int. 301, 91–100 (2019)
Bensefia, A., Paquet, T., Heutte, L.: A writer identification and verification system. Pattern Recogn. Lett. 26(13), 2080–2092 (2005)
Bertolini, D., Oliveira, L.S., Justino, E., Sabourin, R.: Texture-based descriptors for writer identification and verification. Expert Syst. Appl. 40(6), 2069–2080 (2013)
Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 701–717 (2007)
Bulacu, M., Schomaker, L.: Text-independent writer identification and verification using textural and allographic features. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 701–717 (2007)
Chahi, A., Ruichek, Y., Touahni, R., et al.: Block wise local binary count for off-line text-independent writer identification. Expert Syst. Appl. 93, 1–14 (2018)
Chahi, A., Ruichek, Y., Touahni, R., et al.: Local gradient full-scale transform patterns based off-line text-independent writer identification. Appl. Soft Comput. 92, 106277 (2020)
Christlein, V., Bernecker, D., Maier, A., Angelopoulou, E.: Offline writer identification using convolutional neural network activation features. In: Gall, J., Gehler, P., Leibe, B. (eds.) Pattern Recognition: 37th German Conference, GCPR 2015, Aachen, pp. 540–552. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_45
Christlein, V., Gropp, M., Fiel, S., Maier, A.: Unsupervised feature learning for writer identification and writer retrieval. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 991–997. IEEE (2017)
Christlein, V., Maier, A.: Encoding CNN activations for writer recognition. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 169–174. IEEE (2018)
Djeddi, C., Meslati, L.S., Siddiqi, I., Ennaji, A., El Abed, H., Gattal, A.: Evaluation of texture features for offline Arabic writer identification. In: 2014 11th IAPR International Workshop on Document Analysis Systems, pp. 106–110. IEEE (2014)
Freitas, C., Oliveira, L.S., Sabourin, R., Bortolozzi, F.: Brazilian forensic letter database. In: 11th International Workshop on Frontiers on Handwriting Recognition, Montreal (2008)
Hannad, Y., Siddiqi, I., Djeddi, C., El-Kettani, M.E.Y.: Improving arabic writer identification using score-level fusion of textural descriptors. IET Biometrics 8(3), 221–229 (2019)
Hannad, Y., Siddiqi, I., El Kettani, M.E.Y.: Writer identification using texture descriptors of handwritten fragments. Expert Syst. Appl. 47, 14–22 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, S., Schomaker, L.: Writer identification using curvature-free features. Pattern Recogn. 63, 451–464 (2017)
He, S., Schomaker, L.: Fragnet: writer identification using deep fragment networks. IEEE Trans. Inf. Forens. Secur. 15, 3013–3022 (2020)
He, S., Wiering, M., Schomaker, L.: Junction detection in handwritten documents and its application to writer identification. Pattern Recogn. 48(12), 4036–4048 (2015)
Khalifa, E., Al-Maadeed, S., Tahir, M.A., Bouridane, A., Jamshed, A.: Off-line writer identification using an ensemble of grapheme codebook features. Pattern Recogn. Lett. 59, 18–25 (2015)
Khan, F.A., Tahir, M.A., Khelifi, F., Bouridane, A., Almotaeryi, R.: Robust off-line text independent writer identification using bagged discrete cosine transform features. Exp. Syst. Appl. 71, 404–415 (2017)
Lazrak, S., Semma, A., El Kaab, N.A., El Kettani, M.E.Y., Mentagui, D.: Writer identification using textural features. In: ITM Web of Conferences, vol. 43, p. 01027. EDP Sciences (2022)
Pinhelli, F., Britto, Jr., A.S., Oliveira, L.S., Costa, Y.M., Bertolini, D.: Single-sample writers–“document filter" and their impacts on writer identification. arXiv preprint arXiv:2005.08424 (2020)
Rehman, A., Naz, S., Razzak, M.I., Hameed, I.A.: Automatic visual features for writer identification: a deep learning approach. IEEE Access 7, 17149–17157 (2019)
Semma, A., Hannad, Y., El Kettani, M.E.Y.: Impact of the CNN patch size in the writer identification. In: Networking, Intelligent Systems and Security, pp. 103–114. Springer, Cham (2022). https://doi.org/10.1007/978-981-16-3637-0_8
Semma, A., Hannad, Y., Siddiqi, I., Djeddi, C., El Kettani, M.E.Y.: Writer identification using deep learning with fast keypoints and harris corner detector. Expert Syst. Appl. 184, 115473 (2021). https://doi.org/10.1016/j.eswa.2021.115473
Semma, A., Hannad, Y., Siddiqi, I., Lazrak, S., Kettani, M.E.Y.E.: Feature learning and encoding for multi-script writer identification. Int. J. Doc. Anal. Recogn. 25(2), 79–93 (2022). 10.1007/s10032-022-00394-8
Semma, A., Lazrak, S., Hannad, Y., Boukhani, M., El Kettani, Y.: Writer identification: the effect of image resizing on CNN performance. Int. Archiv. Photogram. Remote Sens. Spatial Inf. Sci. 46, 501–507 (2021)
Semma, A., Lazrak, S., Hannad, Y., El Kettani, M.E.Y.: Writer identification using vlad encoding of the histogram of gradient angle distribution. E3S Web Conf. 351, 01073 (2022). EDP Sciences
Siddiqi, I., Vincent, N.: Writer identification in handwritten documents. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 1, pp. 108–112. IEEE (2007)
Siddiqi, I., Vincent, N.: Text independent writer recognition using redundant writing patterns with contour-based orientation and curvature features. Pattern Recogn. 43(11), 3853–3865 (2010)
Singh, P., Roy, P.P., Raman, B.: Writer identification using texture features: a comparative study. Comput. Electric. Eng. 71, 1–12 (2018)
Wu, X., Tang, Y., Bu, W.: Offline text-independent writer identification based on scale invariant feature transform. IEEE Trans. Inf. Forens. Secur. 9(3), 526–536 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Semma, A., Lazrak, S., Hannad, Y. (2024). Enhancing Writer Identification with Local Gradient Histogram Analysis. In: Ben Ahmed, M., Boudhir, A.A., El Meouche, R., Karaș, İ.R. (eds) Innovations in Smart Cities Applications Volume 7. SCA 2023. Lecture Notes in Networks and Systems, vol 938. Springer, Cham. https://doi.org/10.1007/978-3-031-54376-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-54376-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-54375-3
Online ISBN: 978-3-031-54376-0
eBook Packages: EngineeringEngineering (R0)