Nothing Special   »   [go: up one dir, main page]

Skip to main content

Security and Privacy for Mobile Crowdsensing: Improving User Relevance and Privacy

  • Conference paper
  • First Online:
Computer Security. ESORICS 2023 International Workshops (ESORICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14398))

Included in the following conference series:

  • 398 Accesses

Abstract

Mobile crowdsensing (MCS) leverages smart devices for diverse data collection tasks, ranging from noise measurements to traffic congestion levels. However, with security and privacy a prerequisite for deployment, creating a diverse ecosystem, considering user specifics, providing adequate privacy to task initiators, and enhancing user control are key factors for MCS systems to achieve their full potential. We introduce our secure and privacy-preserving architecture for MCS, designed to address these challenges, improving user control, relevance, and privacy. Our work utilizes a variant of identity-based encryption to capture user characteristics and attributes, enabling secure task enrollment and eligibility enforcement while reinforcing task initiator privacy. This study emphasizes modularity as a design goal, enabling system entities to function without relying upon others while supporting all security and privacy requirements of MCS stakeholders. We finally evaluate feasibility and efficiency to show that the proposed system is practical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Such attacks are beyond the scope of this work.

  2. 2.

    The construction of these misbehavior detection methods is beyond the scope of this work and therefore is not discussed here.

References

  1. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical identity-based encryption. Cryptology ePrint Archive, Paper 2007/221 (2007)

    Google Scholar 

  2. Borsub, J., Papadimitratos, P.: Hardened registration process for participatory sensing. In: Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. Association for Computing Machinery (2018)

    Google Scholar 

  3. Brown, A., Franken, P., Bonner, S., Dolezal, N., Moross, J.: Safecast: successful citizen-science for radiation measurement and communication after Fukushima. J. Radiol. Prot. 36(2), S82–S101 (2016)

    Article  Google Scholar 

  4. Chen, J., Liu, Y., Xiang, Y., Sood, K.: RPPTD: robust privacy-preserving truth discovery scheme. IEEE Syst. J. 16(3), 4525–4531 (2022)

    Article  Google Scholar 

  5. De Cristofaro, E., Soriente, C.: Extended capabilities for a privacy-enhanced participatory sensing infrastructure (PEPSI). IEEE Trans. Inf. Forensics Secur. 8(12), 2021–2033 (2013)

    Article  Google Scholar 

  6. Eryonucu, C., Papadimitratos, P.: Sybil-based attacks on google maps or how to forge the image of city life. In: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks (2022)

    Google Scholar 

  7. Giannetsos, T., Gisdakis, S., Papadimitratos, P.: Trustworthy people-centric sensing: privacy, security and user incentives road-map. In: 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET) (2014)

    Google Scholar 

  8. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: Security, privacy, and incentive provision for mobile crowd sensing systems. IEEE Internet Things J. 3(5), 839–853 (2016)

    Article  Google Scholar 

  9. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: SPPEAR: security and privacy-preserving architecture for participatory-sensing applications. In: ACM Conference on Security and Privacy in Wireless and Mobile Networks (ACM WiSec) (2014)

    Google Scholar 

  10. Gisdakis, S., Giannetsos, T., Papadimitratos, P.: SHIELD: a data verification framework for participatory sensing systems. In: ACM Conference on Security & Privacy in Wireless and Mobile Networks (ACM WiSec) (2015)

    Google Scholar 

  11. Google: Popular times, wait times, and visit duration. https://support.google.com/business/answer/6263531. Accessed 19 June 2013

  12. Grubeša, S., Petošić, A., Suhanek, M., Durek, I.: Mobile crowdsensing accuracy for noise mapping in smart cities. Automatika (2018)

    Google Scholar 

  13. Günther, F., Manulis, M., Peter, A.: Privacy-enhanced participatory sensing with collusion resistance and data aggregation. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 321–336. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12280-9_21

    Chapter  Google Scholar 

  14. Help, W.: How does waze work? https://support.google.com/waze/answer/6078702. Accessed 17 June 2023

  15. Kumar, S., Hu, Y., Andersen, M.P., Popa, R.A., Culler, D.E.: JEDI: many-to-many end-to-end encryption and key delegation for IoT. In: 28th USENIX Security Symposium (USENIX Security 2019). USENIX Association (2019)

    Google Scholar 

  16. Lu, Y., Tang, Q., Wang, G.: ZebraLancer: private and anonymous crowdsourcing system atop open blockchain. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS) (2018)

    Google Scholar 

  17. Luo, T., Huang, J., Kanhere, S.S., Zhang, J., Das, S.K.: Improving IoT data quality in mobile crowd sensing: a cross validation approach. IEEE Internet Things J. 6(3), 5651–5664 (2019)

    Article  Google Scholar 

  18. Ni, J., Zhang, K., Xia, Q., Lin, X., Shen, X.S.: Enabling strong privacy preservation and accurate task allocation for mobile crowdsensing. IEEE Trans. Mob. Comput. 19(6), 1317–1331 (2020)

    Article  Google Scholar 

  19. OAuth2: Oauth2 access tokens. https://oauth.net/2/

  20. Pournajaf, L., Garcia-Ulloa, D.A., Xiong, L., Sunderam, V.: Participant privacy in mobile crowd sensing task management: a survey of methods and challenges. ACM SIGMOD Rec. 44, 23–34 (2016)

    Article  Google Scholar 

  21. Restuccia, F., Ferraro, P., Sanders, T.S., Silvestri, S., Das, S.K., Re, G.L.: FIRST: a framework for optimizing information quality in mobile crowdsensing systems. ACM Trans. Sens. Netw. (TOSN) 15(1), 1–35 (2018)

    Google Scholar 

  22. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. Proc. IEEE 63(9), 1278–1308 (1975)

    Article  Google Scholar 

  23. Shin, M., Cornelius, C., Peebles, D., Kapadia, A., Kotz, D., Triandopoulos, N.: AnonySense: a system for anonymous opportunistic sensing. Pervasive Mob. Comput. 7, 16–30 (2011)

    Article  Google Scholar 

  24. Tschofenig, H., Pegourie-Gonnard, M.: Performance of state-of-the-art cryptography on arm-based microprocessors. In: NIST Lightweight Cryptography Workshop, vol. 2015 (2015)

    Google Scholar 

  25. Wu, H., Wang, L., Xue, G., Tang, J., Yang, D.: Enabling data trustworthiness and user privacy in mobile crowdsensing. IEEE/ACM Trans. Networking 27(6), 2294–2307 (2019)

    Article  Google Scholar 

  26. Wu, H.T., Zheng, Y., Zhao, B., Hu, J.: An anonymous reputation management system for mobile crowdsensing based on dual blockchain. IEEE Internet Things J. 9(9), 6956–6968 (2022)

    Article  Google Scholar 

  27. Yan, X., Zeng, B., Zhang, X.: Privacy-preserving and customization-supported data aggregation in mobile crowdsensing. IEEE Internet Things J. 9(20), 19868–19880 (2022)

    Article  Google Scholar 

  28. Zhang, X., Lu, R., Ray, S., Shao, J., Ghorbani, A.A.: Spatio-temporal similarity based privacy-preserving worker selection in mobile crowdsensing. In: 2021 IEEE Global Communications Conference (GLOBECOM) (2021)

    Google Scholar 

  29. Zhao, B., Liu, X., Chen, W.N., Liang, W., Zhang, X., Deng, R.H.: PRICE: privacy and reliability-aware real-time incentive system for crowdsensing. IEEE Internet Things J. 8(24), 17584–17595 (2021)

    Article  Google Scholar 

  30. Zou, S., Xi, J., Xu, G., Zhang, M., Lu, Y.: CrowdHB: a decentralized location privacy-preserving crowdsensing system based on a hybrid blockchain network. IEEE Internet Things J. 9(16), 14803–14817 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cihan Eryonucu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eryonucu, C., Papadimitratos, P. (2024). Security and Privacy for Mobile Crowdsensing: Improving User Relevance and Privacy. In: Katsikas, S., et al. Computer Security. ESORICS 2023 International Workshops. ESORICS 2023. Lecture Notes in Computer Science, vol 14398. Springer, Cham. https://doi.org/10.1007/978-3-031-54204-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-54204-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-54203-9

  • Online ISBN: 978-3-031-54204-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics