Nothing Special   »   [go: up one dir, main page]

Skip to main content

CT-MVSNet: Efficient Multi-view Stereo with Cross-Scale Transformer

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14555))

Included in the following conference series:

Abstract

Recent deep multi-view stereo (MVS) methods have widely incorporated transformers into cascade network for high-resolution depth estimation, achieving impressive results. However, existing transformer-based methods are constrained by their computational costs, preventing their extension to finer stages. In this paper, we propose a novel cross-scale transformer (CT) that processes feature representations at different stages without additional computation. Specifically, we introduce an adaptive matching-aware transformer (AMT) that employs different interactive attention combinations at multiple scales. This combined strategy enables our network to capture intra-image context information and enhance inter-image feature relationships. Besides, we present a dual-feature guided aggregation (DFGA) that embeds the coarse global semantic information into the finer cost volume construction to further strengthen global and local feature awareness. Meanwhile, we design a feature metric loss (FM Loss) that evaluates the feature bias before and after transformation to reduce the impact of feature mismatch on depth estimation. Extensive experiments on DTU dataset and Tanks and Temples (T &T) benchmark demonstrate that our method achieves state-of-the-art results. Code is available at https://github.com/wscstrive/CT-MVSNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aanæs, H., Jensen, R.R., Vogiatzis, G., Tola, E., Dahl, A.B.: Large-scale data for multiple-view stereopsis. Int. J. Comput. Vis. 120(2), 153–168 (2016)

    Article  MathSciNet  Google Scholar 

  2. Campbell, N.D.F., Vogiatzis, G., Hernández, C., Cipolla, R.: Using multiple hypotheses to improve depth-maps for multi-view stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 766–779. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_58

    Chapter  Google Scholar 

  3. Cheng, S., et al.: Deep stereo using adaptive thin volume representation with uncertainty awareness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2524–2534 (2020)

    Google Scholar 

  4. Ding, Y., et al.: TransMVSNet: global context-aware multi-view stereo network with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8585–8594 (2022)

    Google Scholar 

  5. Dosovitskiy, A., et al.: An image is worth 16\(\,\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  6. Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 873–881 (2015)

    Google Scholar 

  7. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2020)

    Google Scholar 

  8. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are RNNs: fast autoregressive transformers with linear attention. In: Proceedings of International Conference on Machine Learning, pp. 5156–5165 (2020)

    Google Scholar 

  9. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  10. Liao, J., et al.: WT-MVSNet: window-based transformers for multi-view stereo. Adv. Neural. Inf. Process. Syst. 35, 8564–8576 (2022)

    Google Scholar 

  11. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  12. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  13. Ma, X., Gong, Y., Wang, Q., Huang, J., Chen, L., Yu, F.: EPP-MVSNet: epipolar-assembling based depth prediction for multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5732–5740 (2021)

    Google Scholar 

  14. Mi, Z., Di, C., Xu, D.: Generalized binary search network for highly-efficient multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12991–13000 (2022)

    Google Scholar 

  15. Peng, R., Wang, R., Wang, Z., Lai, Y., Wang, R.: Rethinking depth estimation for multi-view stereo: a unified representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8645–8654 (2022)

    Google Scholar 

  16. Ruan, C., Zhang, Z., Jiang, H., Dang, J., Wu, L., Zhang, H.: Vector approximate message passing with sparse Bayesian learning for gaussian mixture prior. China Communications (2023)

    Google Scholar 

  17. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  18. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  19. Stereopsis, R.M.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8) (2010)

    Google Scholar 

  20. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8922–8931 (2021)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: PatchmatchNet: learned multi-view patchmatch stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14194–14203 (2021)

    Google Scholar 

  23. Wang, Q., Zhang, J., Yang, K., Peng, K., Stiefelhagen, R.: MatchFormer: interleaving attention in transformers for feature matching. In: Proceedings of the Asian Conference on Computer Vision, pp. 2746–2762 (2022)

    Google Scholar 

  24. Wang, S., Li, B., Dai, Y.: Efficient multi-view stereo by iterative dynamic cost volume. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8655–8664 (2022)

    Google Scholar 

  25. Wang, X., et al.: MVSTER: epipolar transformer for efficient multi-view stereo. In: Proceedings of the European Conference on Computer Vision, pp. 573–591. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_33

  26. Wei, Z., Zhu, Q., Min, C., Chen, Y., Wang, G.: AA-RMVSNet: adaptive aggregation recurrent multi-view stereo network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6187–6196 (2021)

    Google Scholar 

  27. Xi, J., Shi, Y., Wang, Y., Guo, Y., Xu, K.: RayMVSNet: learning ray-based 1D implicit fields for accurate multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8595–8605 (2022)

    Google Scholar 

  28. Yang, J., Mao, W., Alvarez, J.M., Liu, M.: Cost volume pyramid based depth inference for multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4877–4886 (2020)

    Google Scholar 

  29. Yang, Z., Ren, Z., Shan, Q., Huang, Q.: MVS2D: efficient multi-view stereo via attention-driven 2d convolutions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8574–8584 (2022)

    Google Scholar 

  30. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision, pp. 767–783 (2018)

    Google Scholar 

  31. Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent MVSNet for high-resolution multi-view stereo depth inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5525–5534 (2019)

    Google Scholar 

  32. Yao, Y., et al.: BlendedMVS: a large-scale dataset for generalized multi-view stereo networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1790–1799 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (No. 62101275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Jiang, H., Xiang, L. (2024). CT-MVSNet: Efficient Multi-view Stereo with Cross-Scale Transformer. In: Rudinac, S., et al. MultiMedia Modeling. MMM 2024. Lecture Notes in Computer Science, vol 14555. Springer, Cham. https://doi.org/10.1007/978-3-031-53308-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53308-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53307-5

  • Online ISBN: 978-3-031-53308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics