Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Food Engineering Series ((FSES))

  • 186 Accesses

Abstract

Microwave could go through food materials to provide volumetric heating. Compared with traditional heating methods transporting energy through temperature gradient, microwave heating overcomes the low heat transfer rate due to the low thermal conductivity of food materials. As a result, microwave has been widely used in heating foods both for household and industrial applications. The design of domestic microwave oven has been mature, which contains a 2450 MHz magnetron and a multi-mode resonant cavity. The size of the resonant cavity in each dimension is much longer than that of the microwave wavelength. For industrial application, 915 MHz microwave generators are always equipped on the heating system, which brings deeper penetration depth. For continuous production of suppressor is indispensable to keep food products continuously load and unload. Industrial microwave heating systems have been successfully used in drying and thawing processes to shorten processing time, reduce energy consumption and improve processing quality. However, in thermal processing, such as pasteurization and serialization, the industrialization of microwave heating is in progress. Numerous problems concerning microbial safety of microwave thermal processing have been fixed. The major drawback of microwave heating either for domestic or industrial application is the non-uniform heating, which is dominated by the electric field distribution. For domestic microwave oven, edge heating brings the major non-uniform heating. Microwave with lower frequency is more suitable for large scale industrial microwave heating system. Microwave thermal processing for producing high quality convenient food products is a promising technology in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52(1), 243–261.

    Article  CAS  Google Scholar 

  2. Wang, Y. J., Wang, Y. F., & Luan, D. L. (2023). Thermal degradation characteristics of amino acids in rainbow trout fillets during traditional high temperature short time processing and microwave processing. Journal of Food Measurement and Characterization, 17(2), 1940–1952.

    Article  Google Scholar 

  3. Boateng, I. D. (2023). Thermal and nonthermal assisted drying of fruits and vegetables. Underlying principles and role in physicochemical properties and product quality. Food Engineering Reviews, 15(1), 113–155.

    Article  CAS  Google Scholar 

  4. Viji, P., Madhusudana Rao, B., Debbarma, J., & Ravishankar, C. N. (2022). Research developments in the applications of microwave energy in fish processing: A review. Trends in Food Science and Technology, 123, 222–232.

    Article  CAS  Google Scholar 

  5. Wang, X., Yi, Y., Guo, C., Wang, X., Yu, J., & Xia, S. (2023). Enhanced sodium release and saltiness perception of surimi gels by microwave combined with water bath heating. Food Hydrocolloids, 134, 108018.

    Article  CAS  Google Scholar 

  6. Alexander, R. C., Surrell, J. A., & Cohle, S. D. (1987). Microwave-oven burns to children – An unusual manifestation of child-abuse. Pediatrics, 79(2), 255–260.

    Article  CAS  PubMed  Google Scholar 

  7. Satthamsakul, S., & Sriratana, W. (2018). Development of sensor module for detecting the magnetron power based on microwave oven frequency. In 2018 18th international conference on control, automation and systems (ICCAS) (pp. 580–584).

    Google Scholar 

  8. Stolyarov, O. I. (2016). Matching the microwave-oven chamber to the magnetron. Journal of Communications Technology and Electronics, 61(2), 190–196.

    Article  Google Scholar 

  9. Jain, D., Tang, J. M., Liu, F., Tang, Z. W., & Pedrow, P. D. (2018). Computational evaluation of food carrier designs to improve heating uniformity in microwave assisted thermal pasteurization. Innovative Food Science & Emerging Technologies, 48, 274–286.

    Article  CAS  Google Scholar 

  10. Schou-Pedersen, A. M. V., Ostergaard, J., Cornett, C., & Hansen, S. H. (2015). Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies. International Journal of Pharmaceutics, 485(1-2), 97–107.

    Article  CAS  PubMed  Google Scholar 

  11. Matalgyto, F. S., & Al-Khalifa, A. S. (1998). Effect of microwave oven heating on stability of some oils and fats. Arab Gulf Journal of Scientific Research, 16(2), 431–450.

    Google Scholar 

  12. Vieira, T. M. F. S., & Regitano-d’Arce, M. A. B. (1999). Ultraviolet spectrophotometric evaluation of corn oil oxidative stability during microwave heating and oven test. Journal of Agricultural and Food Chemistry, 47(6), 2203–2206.

    Article  CAS  PubMed  Google Scholar 

  13. Mikhailov, V. A., & Cooper, H. J. (2009). Activated Ion Electron Capture Dissociation (AI ECD) of proteins: Synchronization of infrared and electron irradiation with ion magnetron motion. Journal of the American Society for Mass Spectrometry, 20(5), 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luan, D. L., Wang, Y. F., Tang, J. M., & Jain, D. (2017). Frequency distribution in domestic microwave ovens and its influence on heating pattern. Journal of Food Science, 82(2), 429–436.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, S. X., Ogiwara, Y., Fukuoka, M., & Sakai, N. (2014). Investigation and modeling of temperature changes in food heated in a flatbed microwave oven. Journal of Food Engineering, 131, 142–153.

    Article  Google Scholar 

  16. Yi, Z. K., Qiu, W. Q., Jiao, Y., Row, K. H., Cheng, Y. D., & Jin, Y. Z. (2021). Calculation of electric field and temperature distribution within a microwave oven with realistic geometric features geometric features using numeric simulations. The Journal of Microwave Power and Electromagnetic Energy, 55(1), 3–27.

    Article  Google Scholar 

  17. Watanabe, S., Karakawa, M., & Hashimoto, O. (2010). Computer simulation of temperature distribution of frozen material heated in a microwave oven. IEEE Transactions on Microwave Theory and Techniques, 58(5), 1196–1204.

    Article  Google Scholar 

  18. Guo, W. Q., Healy, W. M., & Zhou, M. C. (2010). Performance measurement and analysis of low data rate wireless communication under interference sources in buildings. In IEEE international conference on systems, man and cybernetics (SMC 2010).

    Google Scholar 

  19. Tepnatim, W., Daud, W., & Kamonpatana, P. (2021). Simulation of thermal and electric field distribution in packaged sausages heated in a stationary versus a rotating microwave oven. Food, 10(7), 1622.

    Article  CAS  Google Scholar 

  20. Yoshida, H., Tomiyama, Y., Hirakawa, Y., & Mizushina, Y. (2006). Microwave roasting effects on the oxidative stability of oils and molecular species of triacylglycerols in the kernels of pumpkin (Cucurbita spp.) seeds. Journal of Food Composition and Analysis, 19(4), 330–339.

    Article  CAS  Google Scholar 

  21. Plaza-Gonzalez, P., Monzo-Cabrera, J., Catala-Civera, J. M., & Sanchez-Hernandez, D. (2004). New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers. IEEE Transactions on Magnetics, 40(3), 1672–1678.

    Article  Google Scholar 

  22. Vadivambal, R., & Jayas, D. S. (2010). Non-uniform temperature distribution during microwave heating of food materials – A review. Food and Bioprocess Technology, 3(2), 161–171.

    Article  Google Scholar 

  23. Ye, J. H., Hong, T., Wu, Y. Y., Wu, L., Liao, Y. H., Zhu, H. C., et al. (2017). Model stirrer based on a multi-material turntable for microwave processing materials. Materials, 10(2), 95.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scott, F. J., Sesti, E. L., Choi, E. J., Laut, A. J., Sirigiri, J. R., & Barnes, A. B. (2018). Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators. Magnetic Resonance in Chemistry, 56(9), 831–835.

    Article  CAS  PubMed  Google Scholar 

  25. Minashin, P. V., & Kukushkin, A. B. (2023). Spectral intensity of electron cyclotron radiation emerging from the plasma to the first wall in ITER. Symmetry-Basel, 15(1), 118.

    Article  CAS  Google Scholar 

  26. Lerner, R. G., Metaxas, T., Scott, J. T., Adams, P. D., & Judd, P. (1983). Primary publication systems and scientific text-processing. Annual Review of Information Science and Technology, 18, 127–149.

    Google Scholar 

  27. Wong, W. L. E., & Gupta, M. (2007). Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Composites Science and Technology, 67(7–8), 1541–1552.

    Article  CAS  Google Scholar 

  28. Cohen, J. S., & Yang, T. C. S. (1995). Progress in food dehydration. Trends in Food Science and Technology, 6(1), 20–25.

    Article  CAS  Google Scholar 

  29. Ma, X. T., Luo, G. Y., Li, Z. F., Raghavan, G. S. V., Chen, H. Y., & Song, C. F. (2021). Microwave power control scheme for potatoes based on dielectric loss factor feedback. Journal of Food Engineering, 288, 110134.

    Article  Google Scholar 

  30. Igual, M., Garcia-Martinez, E., Martin-Esparza, M. E., & Martinez-Navarrete, N. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Foodservice Research International, 47(2), 284–290.

    Article  Google Scholar 

  31. Li, R., Guo, M. Y., Liao, E., Wang, Q., Peng, L. J., Jin, W. P., et al. (2022). Effects of repeated freezing and thawing on myofibrillar protein and quality characteristics of marinated Enshi black pork. Food Chemistry, 378, 131994.

    Article  CAS  PubMed  Google Scholar 

  32. Ekezie, F. G. C., Sun, D. W., Han, Z., & Cheng, J. H. (2017). Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends in Food Science and Technology, 67, 58–69.

    Article  Google Scholar 

  33. Guo, C. K., Wang, Y. F., & Luan, D. L. (2020). Non-thermal effects of microwave processing on inactivation of Clostridium Sporogenes inoculated in salmon fillets. LWT- Food Science and Technology, 133, 109861.

    Article  CAS  Google Scholar 

  34. Guo, C., Wang, Y., & Luan, D. (2021). Study the synergism of microwave thermal and non-thermal effects on microbial inactivation and fatty acid quality of salmon fillet during pasteurization process. LWT- Food Science and Technology, 152, 112280.

    Article  CAS  Google Scholar 

  35. Ding, K. H., Wang, Y. F., & Luan, D. L. (2023). Effects of high-temperature short-time processing on nutrition quality of Pacific saury (Cololabis saira) using extracted fatty acids as the indicator. Food Science & Nutrition, 11(1), 157–167.

    Article  CAS  Google Scholar 

  36. Kontopodi, E., Boeren, S., Stahl, B., van Goudoever, J. B., van Elburg, R. M., & Hettinga, K. (2022). High-temperature short-time preserves human milk’s bioactive proteins and their function better than pasteurization techniques with long processing times. Frontiers in Pediatrics, 9, 798609.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Salazar-Gonzalez, C., San Martin-Gonzalez, M. F., Lopez-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology, 5(1), 31–46.

    Article  Google Scholar 

  38. Soni, A., Al-Sarayreh, M., Reis, M. M., Smith, J., Tong, K., & Brightwell, G. (2020). Identification of cold spots using non-destructive hyperspectral imaging technology in model food processed by coaxially induced microwave pasteurization and sterilization. Food, 9(6), 837.

    Article  Google Scholar 

  39. Li, Y. C., Xu, F., Hu, X. F., Luan, Y. B., Han, Z. J., & Wang, Z. Y. (2015). Micro-focusing effect of electromagnetic fields and its influence on sintering during the microwave processing of ceramic particles of SiC. Ceramics International, 41(10), 14554–14560.

    Article  CAS  Google Scholar 

  40. Setiady, D., Tang, J., Younce, F., Swanson, B. A., Rasco, B. A., & Clary, C. D. (2009). Porosity, color, texture, and microscopic structure of russet potatoes dried using microwave vacuum, heated air, and freeze drying. Applied Engineering in Agriculture, 25(5), 719–724.

    Article  Google Scholar 

  41. Tang, J. M. (2015). Unlocking potentials of microwaves for food safety and quality. Journal of Food Science, 80(8), E1776–E1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ricci, A. (2008). Solventless reactions under microwave activation: Safety and efficiency at the service of customer-friendly chemistry. New Methodologies and Techniques for a Sustainable Organic Chemistry, 246, 193–223.

    Article  CAS  Google Scholar 

  43. Park, J., & Lee, K. H. (2009). Synthesis of peptide amides on safety-catch resin with microwave irradiation. Bulletin of the Korean Chemical Society, 30(10), 2475–2478.

    Article  CAS  Google Scholar 

  44. Lin, J. C. (2004). Health effects – Human EEG and microwave radiation from cell phones. IEEE Microwave Magazine, 5(2), 34–38.

    Article  Google Scholar 

  45. Roosli, M., Rapp, R., & Braun-Fahrlander, C. (2003). Radio and microwave frequency radiation and health – An analysis of the literature. Gesundheitswesen, 65(6), 378–392.

    CAS  PubMed  Google Scholar 

  46. Murcia, M. A., Martinez-Tome, M., del Cerro, I., Sotillo, F., & Ramirez, A. (1999). Proximate composition and vitamin E levels in egg yolk: Losses by cooking in a microwave oven. Journal of the Science of Food and Agriculture, 79(12), 1550–1556.

    Article  CAS  Google Scholar 

  47. Levine, Z. H. (2018). Science at home: Measuring a thermophysical property of water with a microwave oven. Physics Teacher, 56(2), 107–110.

    Article  PubMed  Google Scholar 

  48. New, C. Y., Thung, T. Y., Premarathne, J. M. K. J. K., Russly, A. R., Abdulkarim, S. M., & Son, R. (2017). Microwave oven safety: A food safety consumer survey in Malaysia. Food Control, 80, 420–427.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglei Luan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Luan, D. (2024). Microwave Ovens: Domestic and Industrial. In: Pratap Singh, A., Erdogdu, F., Wang, S., Ramaswamy, H.S. (eds) Microwave Processing of Foods: Challenges, Advances and Prospects. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-031-51613-9_2

Download citation

Publish with us

Policies and ethics