Abstract
Next event estimation has been widely applied to Monte Carlo rendering methods such as path tracing since estimating direct and indirect lighting separately often enables finding light paths from the eye to the lights effectively. Its success heavily relies on light sampling for direct lighting when a scene contains multiple light sources since each light can contribute differently to the reflected radiance on a surface point. We present a light sampling technique that can guide such a light selection to improve direct lighting. We estimate a spatially-varying function that approximates the contribution of each light on surface points within a discretized local area (i.e., a voxel in an adaptive octree) while considering the visibility between lights and surface points. We then construct a probability distribution function for sampling lights per voxel, which is proportional to our estimated function. We demonstrate that our light sampling technique can significantly improve rendering quality thanks to improved direct lighting with our light sampling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, S., Ramamoorthi, R., Belongie, S., Jensen, H.W.: Structured importance sampling of environment maps. ACM Trans. Graph. 22(3), 605–612 (2003)
Bako, S., Meyer, M., DeRose, T., Sen, P.: Offline deep importance sampling for Monte Carlo path tracing. Comput. Graph. Forum 38(7), 527–542 (2019)
Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A., Jarosz, W.: Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Trans. Graph. 39(4), 1–17 (2020)
Burke, D., Ghosh, A., Heidrich, W.: Bidirectional importance sampling for direct illumination. In: Proceedings of the 16th Eurographics Conference on Rendering Techniques, pp. 147–156 (2005)
Burley, B., et al.: The design and evolution of Disney’s Hyperion renderer. ACM Trans. Graph. 37(3), 1–22 (2018)
Clarberg, P., Akenine-Möllery, T.: Practical product importance sampling for direct illumination. Comput. Graph. Forum 27(2), 681–690 (2008)
Conty Estevez, A., Kulla, C.: Importance sampling of many lights with adaptive tree splitting. Proc. ACM Comput. Graph. Interact. Tech. 1(2), 1–17 (2018)
Diolatzis, S., Gruson, A., Jakob, W., Nowrouzezahrai, D., Drettakis, G.: Practical product path guiding using linearly transformed cosines. Comput. Graph. Forum 39(4), 23–33 (2020)
Fascione, L., et al.: Manuka: a batch-shading architecture for spectral path tracing in movie production. ACM Trans. Graph. 37(3), 1–18 (2018)
Georgiev, I., et al.: Arnold: a brute-force production path tracer. ACM Trans. Graph. 37(3), 1–12 (2018)
Ghosh, A., Heidrich, W.: Correlated visibility sampling for direct illumination. Vis. Comput. 22(9), 693–701 (2006)
Guo, J.J., Eisemann, M., Eisemann, E.: Next event estimation++: visibility mapping for efficient light transport simulation. Comput. Graph. Forum 39(7), 205–217 (2020)
Herholz, S., Elek, O., Vorba, J., Lensch, H., Křivánek, J.: Product importance sampling for light transport path guiding. Comput. Graph. Forum 35(4), 67–77 (2016)
Huo, Y., Wang, R., Zheng, R., Xu, H., Bao, H., Yoon, S.E.: Adaptive incident radiance field sampling and reconstruction using deep reinforcement learning. ACM Trans. Graph. 39(1), 1–17 (2020)
Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org
Kajiya, J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20(4), 143–150 (1986)
Ki, H., Oh, K.: A GPU-based light hierarchy for real-time approximate illumination. Vis. Comput. 24(7), 649–658 (2008)
Lai, Y.C., Chou, H.T., Chen, K.W., Fan, S.: Robust and efficient adaptive direct lighting estimation. Vis. Comput. 31(1), 83–91 (2015)
Lawrence, J., Rusinkiewicz, S., Ramamoorthi, R.: Efficient BRDF importance sampling using a factored representation. ACM Trans. Graph. 23(3), 496–505 (2004)
Liu, Y., Xu, K., Yan, L.Q.: Adaptive BRDF-oriented multiple importance sampling of many lights. Comput. Graph. Forum 38(4), 123–133 (2019)
Müller, T., Gross, M., Novák, J.: Practical path guiding for efficient light-transport simulation. Comput. Graph. Forum 36(4), 91–100 (2017)
Müller, T., Mcwilliams, B., Rousselle, F., Gross, M., Novák, J.: Neural importance sampling. ACM Trans. Graph. 38(5), 1–19 (2019)
Ostromoukhov, V., Donohue, C., Jodoin, P.M.: Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23(3), 488–495 (2004)
Pantaleoni, J.: Importance sampling of many lights with reinforcement lightcuts learning. arXiv preprint arXiv:1911.10217 (2019)
Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation, 3rd edn. Morgan Kaufmann Publishers Inc., Burlington (2016)
Rath, A., Grittmann, P., Herholz, S., Vévoda, P., Slusallek, P., Křivánek, J.: Variance-aware path guiding. ACM Trans. Graph. 39(4), 1–12 (2020)
Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30(6), 1–12 (2011)
Sbert, M., Havran, V.: Adaptive multiple importance sampling for general functions. Vis. Comput. 33(6), 845–855 (2017)
Shirley, P., Wang, C., Zimmerman, K.: Monte Carlo techniques for direct lighting calculations. ACM Trans. Graph. 15(1), 1–36 (1996)
Veach, E.: Robust Monte Carlo methods for light transport simulation. Stanford University (1998)
Veach, E., Guibas, L.: Bidirectional estimators for light transport. In: Sakas, G., Müller, S., Shirley, P. (eds.) Photorealistic Rendering Techniques, pp. 145–167. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-87825-1_11
Veach, E., Guibas, L.J.: Metropolis light transport. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1997, pp. 65–76. ACM Press/Addison-Wesley Publishing Co. (1997)
Vévoda, P., Kondapaneni, I., Křivánek, J.: Bayesian online regression for adaptive direct illumination sampling. ACM Trans. Graph. 37(4), 1–12 (2018)
Vorba, J., Karlík, O., Šik, M., Ritschel, T., Křivánek, J.: On-line learning of parametric mixture models for light transport simulation. ACM Trans. Graph. 33(4), 1–11 (2014)
Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24(3), 1098–1107 (2005)
Wang, Y.C., Wu, Y.T., Li, T.M., Chuang, Y.Y.: Learning to cluster for rendering with many lights. ACM Trans. Graph. 40(6), 1–10 (2021)
Zheng, Q., Zwicker, M.: Learning to importance sample in primary sample space. Comput. Graph. Forum 38(2), 169–179 (2019)
Zhu, S., et al.: Hierarchical neural reconstruction for path guiding using hybrid path and photon samples. ACM Trans. Graph. 40(4), 1–16 (2021)
Zhu, S., et al.: Photon-driven neural reconstruction for path guiding. ACM Trans. Graph. 41(1), 1–15 (2021)
Acknowledgements
We thank the anonymous reviewers for feedback on our paper and the following authors and artists for the 3D models or scenes: Asian Dragon (the Stanford Computer Graphics Laboratory), Lamp (UP3D), Whiteroom (Jay-Artist), and Veach-Ajar (Benedikt Bitterli). The Hotel scene was bought from TurboSquid. This work was supported in part by Ministry of Culture, Sports and Tourism and Korea Creative Content Agency (No. R2021080001) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00207939).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Noh, G., Choi, H., Moon, B. (2024). Enhanced Direct Lighting Using Visibility-Aware Light Sampling. In: Sheng, B., Bi, L., Kim, J., Magnenat-Thalmann, N., Thalmann, D. (eds) Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, vol 14496. Springer, Cham. https://doi.org/10.1007/978-3-031-50072-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-50072-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-50071-8
Online ISBN: 978-3-031-50072-5
eBook Packages: Computer ScienceComputer Science (R0)