Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Learning Model for Personalized Web Service Recommendations Using Attention Mechanism

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14419))

Included in the following conference series:

Abstract

The big volume of candidate Web services and their differences make it hard for developers to discover a set of appropriate ones for mashup creation. Thus, recommending suitable services is a vital problem. Service recommendation methods should not only meet the functional needs of users but also consider contextual features like application domain and service performances to provide more personalized recommendations. In this paper, we propose an attention-based deep learning model for service recommendation. It makes service recommendation based on service characteristics and user feed-backs. Specifically, we build a service network, which learns to intelligently discover services with two attention mechanisms - a functional attention mechanism that takes tags as functional prior to mine the function-related features of services and mashups, and a non-functional attention mechanism that considers service qualities to guide the selection of the most appropriate ones and improves user satisfaction. Experiments are carried out on a real-world web API dataset crawled from ProgrammeableWeb.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development. IEEE Internet Comput. 12(5), 44–52 (2008)

    Article  Google Scholar 

  2. Wang, X., Zhu, J., Zheng, Z., Song, W., Shen, Y., Lyu, M.R.: A spatial-temporal qos prediction approach for time-aware web service recommendation. ACM Trans. Web (TWEB) 10(1), 1–25 (2016)

    Article  Google Scholar 

  3. Yin, Y., Xu, H., Liang, T., Chen, M., Gao, H., Longo, A.: Leveraging data augmentation for service qos prediction in cyber-physical systems. ACM Trans. Internet Technol. (TOIT) 21(2), 1–25 (2021)

    Article  Google Scholar 

  4. Yu, T., Yu, D., Wang, D., Hu, X.: Web service recommendation for mashup creation based on graph network. J. Supercomput., 1–28 (2023)

    Google Scholar 

  5. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: Kgat: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 950–958 (2019)

    Google Scholar 

  6. Li, X., Zhang, X., Wang, P., Cao, Z.: Web services recommendation based on metapath-guided graph attention network. J. Supercomput. 78(10), 12 621–12 647 (2022)

    Google Scholar 

  7. Cao, B., Zhang, L., Peng, M., Qing, Y., Kang, G., Liu, J.: Web service recommendation via combining bilinear graph representation and xdeepfm quality prediction. IEEE Trans. Network Serv. Manage. (2023)

    Google Scholar 

  8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  9. Ramchoun, H., Ghanou, Y., Ettaouil, M., Janati Idrissi, M.A.: Multilayer perceptron: architecture optimization and training (2016)

    Google Scholar 

  10. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555

  11. Lalanne, F., Cavalli, A., Maag, S.: Quality of experience as a selection criterion for web services. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pp. 519–526. IEEE (2012)

    Google Scholar 

  12. Lai, P., et al.: Qoe-aware user allocation in edge computing systems with dynamic qos. Futur. Gener. Comput. Syst. 112, 684–694 (2020)

    Article  Google Scholar 

  13. Li, M., Xu, H., Tu, Z., Su, T., Xu, X., Wang, Z.: A deep learning based personalized qoe/qos correlation model for composite services. In: 2022 IEEE International Conference on Web Services (ICWS), pp. 312–321. IEEE (2022)

    Google Scholar 

  14. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Wei, J., He, J., Chen, K., Zhou, Y., Tang, Z.: Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 69, 29–39 (2017)

    Article  Google Scholar 

  16. Shi, M., Tang, Y., Liu, J.: Ta-blstm: tag attention-based bidirectional long short-term memory for service recommendation in mashup creation. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  17. Shi, M., Liu, J., et al.: Functional and contextual attention-based lstm for service recommendation in mashup creation. IEEE Trans. Parallel Distrib. Syst. 30(5), 1077–1090 (2018)

    Article  Google Scholar 

  18. Cao, B., Liu, X.F., Rahman, M.M., Li, B., Liu, J., Tang, M.: Integrated content and network-based service clustering and web apis recommendation for mashup development. IEEE Trans. Serv. Comput. 13, 99–113 (2017)

    Article  Google Scholar 

  19. Lian, S., Tang, M.: Api recommendation for mashup creation based on neural graph collaborative filtering. Connect. Sci. 34(1), 124–138 (2022)

    Article  Google Scholar 

  20. Yao, L., Wang, X., Sheng, Q.Z., Benatallah, B., Huang, C.: Mashup recommendation by regularizing matrix factorization with api co-invocations. IEEE Trans. Serv. Comput. 14(2), 502–515 (2018)

    Article  Google Scholar 

  21. Shi, M., Liu, J., Zhou, D., Tang, Y.: A topic-sensitive method for mashup tag recommendation utilizing multi-relational service data. IEEE Trans. Serv. Comput. 14, 342–355 (2018)

    Article  Google Scholar 

  22. Kang, G., Liu, J., Xiao, Y., Cao, B., Xu, Y., Cao, M.: Neural and attentional factorization machine-based web api recommendation for mashup development. IEEE Trans. Network Serv. Manage. 18, 4183–4196 (2021)

    Article  Google Scholar 

  23. Liu, J., Tang, M., Zheng, Z., Liu, X., Lyu, S.: Location-aware and personalized collaborative filtering for web service recommendation. IEEE Trans. Serv. Comput. 9(5), 686–699 (2015)

    Article  Google Scholar 

  24. Kwapong, B.A., Anarfi, R., Fletcher, K.K.: Personalized service recommendation based on user dynamic preferences. In: Ferreira, J.E., Musaev, A., Zhang, L.-J. (eds.) SCC 2019. LNCS, vol. 11515, pp. 77–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23554-3_6

    Chapter  Google Scholar 

  25. Ma, W., Shan, R., Qi, M.: General collaborative filtering for web service qos prediction. Math. Probl. Eng. 2018, 1–18 (2018)

    Article  Google Scholar 

  26. Zhou, Y., Yang, X., Chen, T., Huang, Z., Ma, X., Gall, H.C.: Boosting api recommendation with implicit feedback. IEEE Trans. Softw. Eng. 48, 2157–2172 (2021)

    Google Scholar 

  27. Liang, T., et al.: Mobile app recommendation via heterogeneous graph neural network in edge computing. Appl. Soft Comput. 103, 107162 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Boulakbech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boulakbech, M., Messai, N., Sam, Y., Devogele, T. (2023). Deep Learning Model for Personalized Web Service Recommendations Using Attention Mechanism. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14419. Springer, Cham. https://doi.org/10.1007/978-3-031-48421-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48421-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48420-9

  • Online ISBN: 978-3-031-48421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics