Nothing Special   »   [go: up one dir, main page]

Skip to main content

Identity-Based Threshold Signatures from Isogenies

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14421))

Included in the following conference series:

  • 256 Accesses

Abstract

The identity-based signature, initially introduced by Shamir [26], plays a fundamental role in the domain of identity-based cryptography. It offers the capability to generate a signature on a message, allowing any user to verify the authenticity of the signature using the signer’s identifier information (e.g., an email address), instead of relying on a public key stored in a digital certificate. Another significant concept in practical applications is the threshold signature, which serves as a valuable tool for distributing the signing authority. The notion of an identity-based threshold signature scheme pertains to the distribution of a secret key associated with a specific identity among multiple entities, rather than depending on a master secret key generated by a public key generator. This approach enables a qualified group of participants to jointly engage in the signing process. In this paper, we present two identity-based threshold signature schemes based on isogenies, each of which addresses a different aspect of security. The first scheme prioritizes efficiency but offers security with abort, while the second scheme focuses on robustness. Both schemes ensure active security in the quantum random oracle model. To build these identity-based threshold signatures, we begin by modifying the identity-based signature scheme proposed by Shaw and Dutta [27], to accommodate the CSI-SharK signature scheme. Subsequently, we leverage the resulting identity-based signature and build two threshold schemes within the CSIDH (Commutative Supersingular Isogeny Diffie-Hellman) framework. Our proposed identity-based threshold signatures are designed based on CSI-SharK and can be easily adapted with minimal adjustments to function with CSI-FiSh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atapoor, S.: Identity-based threshold signatures from isogenies. Cryptology ePrint Archive, Paper 2023/1459 (2023). https://eprint.iacr.org/2023/1459

  2. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: CSI-SharK: CSI-FiSh with Sharing-friendly Keys. In: Simpson, L., Rezazadeh Baee, M.A. (eds.) Information Security and Privacy - 28th Australasian Conference, ACISP 2023, Brisbane, QLD, Australia, 5–7 July 2023, Proceedings. LNCS, vol. 13915, pp. 471–502. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35486-1_21

  3. Atapoor, S., Baghery, K., Cozzo, D., Pedersen, R.: VSS from distributed ZK proofs and applications. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023–29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, 4–8 December 2023, Proceedings. LNCS. Springer, Cham (2023)

    Google Scholar 

  4. Baek, J., Zheng, Y.: Identity-based threshold signature scheme from the bilinear pairings. In: International Conference on Information Technology: Coding and Computing (ITCC 2004), Las Vegas, Nevada, USA, 5–7 April 2004, vol. 1, pp. 124–128. IEEE Computer Society (2004)

    Google Scholar 

  5. Baghery, K., Cozzo, D., Pedersen, R.: An isogeny-based ID protocol using structured public keys. In: Paterson, M.B. (ed.) IMACC 2021. LNCS, vol. 13129, pp. 179–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92641-0_9

    Chapter  Google Scholar 

  6. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_17

    Chapter  Google Scholar 

  7. Bernstein, D., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies of large prime degree. arXiv preprint arXiv:2003.10118 (2020)

  8. Beullens, W., Disson, L., Pedersen, R., Vercauteren, F.: CSI-RAShi: distributed key generation for CSIDH. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 257–276. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_14

    Chapter  Google Scholar 

  9. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9

    Chapter  Google Scholar 

  10. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17

    Chapter  Google Scholar 

  11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  12. Couveignes, J.M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive 2006:291 (2006)

    Google Scholar 

  13. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_10

    Chapter  Google Scholar 

  14. Crites, E.C., Komlo, C., Maller, M.: Fully adaptive Schnorr threshold signatures. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023–43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, 20–24 August 2023, Proceedings, Part I. LNCS, vol. 14081, pp. 678–709. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38557-5_22

  15. De Feo, L.: Mathematics of isogeny based cryptography. arXiv preprint arXiv:1711.04062 (2017)

  16. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_26

    Chapter  Google Scholar 

  17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  18. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_31

    Chapter  Google Scholar 

  19. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_20

    Chapter  Google Scholar 

  20. Kiltz, E., Neven, G.: Identity-based signatures. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography. Cryptology and Information Security Series, vol. 2, pp. 31–44. IOS Press (2009)

    Google Scholar 

  21. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem. Electronic Colloquium on Computational Complexity, TR96-003 (1996)

    Google Scholar 

  22. Kurosawa, K., Heng, S.-H.: From digital signature to ID-based identification/signature. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 248–261. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9_18

    Chapter  Google Scholar 

  23. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 463–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_16

    Chapter  Google Scholar 

  24. Peng, C., Chen, J., Zhou, L., Choo, K.-K.R., He, D.: CsiiBS: a post-quantum identity-based signature scheme based on isogenies. J. Inf. Secur. Appl. 54, 102504 (2020)

    Google Scholar 

  25. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint Archive, 2006:145 (2006)

    Google Scholar 

  26. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  27. Shaw, S., Dutta, R.: Identification scheme and forward-secure signature in identity-based setting from isogenies. In: Huang, Q., Yu, Yu. (eds.) ProvSec 2021. LNCS, vol. 13059, pp. 309–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90402-9_17

    Chapter  MATH  Google Scholar 

  28. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  29. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6

    Book  MATH  Google Scholar 

  30. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273, 305–347 (1971)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable comments and suggestions. We would also like to extend our special thanks to Elizabeth Crites for shepherding the final version of the paper and her insightful and valuable comments. Additionally, we would like to acknowledge Karim Baghery for his helpful discussions during the initial phases of the paper.

This work has been supported in part by the FWO under an Odysseus project GOH9718N and by CyberSecurity Research Flanders with reference number VR20192203. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Cyber Security Research Flanders or the FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahla Atapoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atapoor, S. (2024). Identity-Based Threshold Signatures from Isogenies. In: Quaglia, E.A. (eds) Cryptography and Coding. IMACC 2023. Lecture Notes in Computer Science, vol 14421. Springer, Cham. https://doi.org/10.1007/978-3-031-47818-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47818-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47817-8

  • Online ISBN: 978-3-031-47818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics