Abstract
In this paper, a new methodology for ranking the attributes of a given decision table is proposed. It is a combination of discernibility relations in rough set theory and decision-making methods based on interval-valued fuzzy sets. Several acceleration methods based on randomized techniques are also presented to reduce the time complexity of the proposed methodology. The experiment results shows that the proposed methods are very up-and-coming.
Supported by University of Finance and Marketing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)
Bakar, S.A., Kamal, S.N.: An application of interval valued fuzzy matrix in modeling clinical waste incineration process. J. Phys. Conf. Ser. 1770(1), 012057 (2021)
Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5(1) (2014)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Lin, Y., Wang, Y.: Group decision making with consistency of intuitionistic fuzzy preference relations under uncertainty. IEEE/CAA J. Automat. Sinica 5, 741–748 (2018)
Nguyen, H.S.: Approximate boolean reasoning: foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006). https://doi.org/10.1007/11847465_16
Pal, M.: Interval-valued fuzzy matrices with interval-valued fuzzy rows and columns. Fuzzy Inf. Eng. 7, 335–368 (2015)
Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 313–325. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_21
Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: Acharya, R.S., Goldgof, D.B. (eds.) Biomedical Image Processing and Biomedical Visualization, vol. 1905, pp. 861–870. International Society for Optics and Photonics, SPIE (1993)
Sugihara, K., Ishii, H., Tanaka, H.: Interval priorities in AHP by interval regression analysis. Eur. J. Oper. Res. 158, 745–754 (2004)
Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12(2), 117–131 (1984)
Vo, B.K., Nguyen, H.S.: Feature selection and ranking method based on intuitionistic fuzzy matrix and rough sets. In: Proceedings of the 17th Conference on Computer Science and Intelligence Systems. Annals of Computer Science and Information Systems, vol. 30, pp. 279–288 (2022)
Wang, Y.M., Yang, J.B., Xu, D.L.: A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy Sets Syst. 152(3), 475–498 (2005)
Wang, Z.J., Li, K.W.: Goal programming approaches to deriving interval weights based on interval fuzzy preference relations. Inf. Sci. 193, 180–198 (2012)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zhang, X., Xu, Z.: A new method for ranking intuitionistic fuzzy values and its application in multi-attribute decision making. Fuzzy Optim. Decis. Mak. 11(2), 135–146 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vo, B.K., Nguyen, H.S. (2023). Application of Interval Valued Fuzzy Sets in Attribute Ranking. In: Huynh, VN., Le, B., Honda, K., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14375. Springer, Cham. https://doi.org/10.1007/978-3-031-46775-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-46775-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46774-5
Online ISBN: 978-3-031-46775-2
eBook Packages: Computer ScienceComputer Science (R0)