Nothing Special   »   [go: up one dir, main page]

Skip to main content

Application of Interval Valued Fuzzy Sets in Attribute Ranking

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2023)

Abstract

In this paper, a new methodology for ranking the attributes of a given decision table is proposed. It is a combination of discernibility relations in rough set theory and decision-making methods based on interval-valued fuzzy sets. Several acceleration methods based on randomized techniques are also presented to reduce the time complexity of the proposed methodology. The experiment results shows that the proposed methods are very up-and-coming.

Supported by University of Finance and Marketing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakar, S.A., Kamal, S.N.: An application of interval valued fuzzy matrix in modeling clinical waste incineration process. J. Phys. Conf. Ser. 1770(1), 012057 (2021)

    Article  Google Scholar 

  3. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5(1) (2014)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Lin, Y., Wang, Y.: Group decision making with consistency of intuitionistic fuzzy preference relations under uncertainty. IEEE/CAA J. Automat. Sinica 5, 741–748 (2018)

    Article  MathSciNet  Google Scholar 

  6. Nguyen, H.S.: Approximate boolean reasoning: foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006). https://doi.org/10.1007/11847465_16

  7. Pal, M.: Interval-valued fuzzy matrices with interval-valued fuzzy rows and columns. Fuzzy Inf. Eng. 7, 335–368 (2015)

    Article  MathSciNet  Google Scholar 

  8. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 313–325. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_21

  9. Street, W.N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. In: Acharya, R.S., Goldgof, D.B. (eds.) Biomedical Image Processing and Biomedical Visualization, vol. 1905, pp. 861–870. International Society for Optics and Photonics, SPIE (1993)

    Chapter  Google Scholar 

  10. Sugihara, K., Ishii, H., Tanaka, H.: Interval priorities in AHP by interval regression analysis. Eur. J. Oper. Res. 158, 745–754 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12(2), 117–131 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vo, B.K., Nguyen, H.S.: Feature selection and ranking method based on intuitionistic fuzzy matrix and rough sets. In: Proceedings of the 17th Conference on Computer Science and Intelligence Systems. Annals of Computer Science and Information Systems, vol. 30, pp. 279–288 (2022)

    Google Scholar 

  13. Wang, Y.M., Yang, J.B., Xu, D.L.: A two-stage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy Sets Syst. 152(3), 475–498 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, Z.J., Li, K.W.: Goal programming approaches to deriving interval weights based on interval fuzzy preference relations. Inf. Sci. 193, 180–198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  16. Zhang, X., Xu, Z.: A new method for ranking intuitionistic fuzzy values and its application in multi-attribute decision making. Fuzzy Optim. Decis. Mak. 11(2), 135–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Son Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vo, B.K., Nguyen, H.S. (2023). Application of Interval Valued Fuzzy Sets in Attribute Ranking. In: Huynh, VN., Le, B., Honda, K., Inuiguchi, M., Kohda, Y. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2023. Lecture Notes in Computer Science(), vol 14375. Springer, Cham. https://doi.org/10.1007/978-3-031-46775-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46775-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46774-5

  • Online ISBN: 978-3-031-46775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics