Nothing Special   »   [go: up one dir, main page]

Skip to main content

Non-Normal Modal Description Logics

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14281))

Included in the following conference series:

Abstract

Modal logics are widely used in multi-agent systems to reason about actions, abilities, norms, or epistemic states. Combined with description logic languages, they are also a powerful tool to formalise modal aspects of ontology-based reasoning over an object domain. However, the standard relational semantics for modalities is known to validate principles deemed problematic in agency, deontic, or epistemic applications. To overcome these difficulties, weaker systems of so-called non-normal modal logics, equipped with neighbourhood semantics that generalise the relational one, have been investigated both at the propositional and at the description logic level. We present here a family of non-normal modal description logics, obtained by extending \(\smash {\mathcal {ALC}} \)-based languages with non-normal modal operators. For formulas interpreted on neighbourhood models over varying domains, we provide a modular framework of terminating, correct, and complete tableau-based satisfiability checking algorithms in \(\textsc {NExpTime}\). For a subset of these systems, we also consider a reduction to satisfiability on constant domain relational models. Moreover, we investigate the satisfiability problem in fragments obtained by disallowing the application of modal operators to description logic concepts, providing tight \(\textsc {ExpTime}\) complexity results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Other approaches (out of the scope of this paper) to avoid such consequences would involve rejecting the principle of excluded middle, as done e.g. in intuitionistic description logics [9, 30, 33].

References

  1. Ågotnes, T., Wáng, Y.N.: Somebody knows. In: KR, pp. 2–11 (2021)

    Google Scholar 

  2. Anglberger, A.J., Gratzl, N., Roy, O.: Obligation, free choice, and the logic of weakest permissions. Rev. Symb. Log. 8(4), 807–827 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Åqvist, L.: Good samaritans, contrary-to-duty imperatives, and epistemic obligations. Noûs 1(4), 361–379 (1967)

    Article  Google Scholar 

  4. Arló-Costa, H.L.: First order extensions of classical systems of modal logic; the role of the Barcan schemas. Stud. Log. 71(1), 87–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arló-Costa, H.L., Pacuit, E.: First-order classical modal logic. Stud. Log. 84(2), 171–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans. Comput. Log. 13(3), 21:1–21:32 (2012)

    Google Scholar 

  7. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  8. Balbiani, P., Fernández-Duque, D., Lorini, E.: The dynamics of epistemic attitudes in resource-bounded agents. Stud. Log. 107(3), 457–488 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bozzato, L., Ferrari, M., Fiorentini, C., Fiorino, G.: A constructive semantics for ALC. In: DL, vol. 250. CEUR-WS.org (2007)

    Google Scholar 

  10. Brown, M.A.: On the logic of ability. J. Philos. Log. 1–26 (1988)

    Google Scholar 

  11. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  12. Dalmonte, T., Lellmann, B., Olivetti, N., Pimentel, E.: Hypersequent calculi for non-normal modal and deontic logics: countermodels and optimal complexity. J. Log. Comput. 31(1), 67–111 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dalmonte, T., Mazzullo, A., Ozaki, A.: On non-normal modal description logics. In: DL, vol. 2373. CEUR-WS.org (2019)

    Google Scholar 

  14. Dalmonte, T., Mazzullo, A., Ozaki, A.: Reasoning in non-normal modal description logics. In: ARQNL@IJCAR, vol. 2095, pp. 28–45 (2022)

    Google Scholar 

  15. Dalmonte, T., Mazzullo, A., Ozaki, A., Troquard, N.: Non-normal modal description logics (extended version). CoRR abs/2307.12265 (2023). https://arxiv.org/abs/2307.12265

  16. Elgesem, D.: The modal logic of agency. Nord. J. Philos. Log. 2, 1–46 (1997)

    Google Scholar 

  17. Forrester, J.W.: Gentle murder, or the adverbial Samaritan. J. Philos. 81(4), 193–197 (1984)

    Article  MathSciNet  Google Scholar 

  18. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional Modal Logics: Theory and Applications. Elsevier, Amsterdam (2003)

    Google Scholar 

  19. Gasquet, O., Herzig, A.: From classical to normal modal logics. In: Wansing, H. (eds.) Proof Theory of Modal Logic. Applied Logic Series, vol. 2, pp. 293–311. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-017-2798-3_15

  20. Goble, L.: Prima facie norms, normative conflicts, and dilemmas. In: Handbook of Deontic Logic and Normative Systems, vol. 1, pp. 241–351. College Publications, London (2013)

    Google Scholar 

  21. Governatori, G., Rotolo, A.: On the axiomatisation of elgesem’s logic of agency and ability. J. Philos. Log. 34(4), 403–431 (2005). https://doi.org/10.1007/s10992-004-6368-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. J. Symb. Log. 64(1), 99–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kripke, S.A.: Semantical analysis of modal logic II: non-normal modal propositional calculi. In: The Theory of Models, pp. 206–220. Elsevier (2014)

    Google Scholar 

  24. Lemmon, E.J., Scott, D.: An Introduction to Modal Logic. Blackwell, Hoboken (1977)

    Google Scholar 

  25. Lewis, C.I., Langford, C.H., Lamprecht, P.: Symbolic Logic, vol. 170. Dover Publications, New York (1959)

    Google Scholar 

  26. Lismont, L., Mongin, P.: A non-minimal but very weak axiomatization of common belief. Artif. Intell. 70(1–2), 363–374 (1994). https://doi.org/10.1016/0004-3702(94)90111-2

    Article  MATH  Google Scholar 

  27. Montague, R.: Universal grammar. Theoria 36(3), 373–398 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographiess. ACM Trans. Web 4(1), 3:1–3:62 (2010)

    Google Scholar 

  29. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67149-9

  30. de Paiva, V.: Constructive description logics: what, why and how. In: Context Representation and Reasoning, Riva del Garda (2006)

    Google Scholar 

  31. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1), 149–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ross, A.: Imperatives and logic. Philos. Sci. 11(1), 30–46 (1944)

    Article  Google Scholar 

  33. Scheele, S.: Model and proof theory of constructive ALC: constructive description logics. Ph.D. thesis, University of Bamberg (2015)

    Google Scholar 

  34. Scott, D.: Advice on modal logic. In: Lambert, K. (eds.) Philosophical Problems in Logic. Synthese Library, vol. 29, pp. 143–173. Springer, Dordrecht (1970). https://doi.org/10.1007/978-94-010-3272-8_7

  35. Segerberg, K.: An essay in classical modal logic. Ph.D. thesis, Stanford University (1971)

    Google Scholar 

  36. Seylan, I., Erdur, R.C.: A tableau decision procedure for \(\cal{ALC} \) with monotonic modal operators and constant domains. ENTCS 231, 113–130 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Seylan, I., Jamroga, W.: Coalition description logic with individuals. ENTCS 262, 231–248 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Seylan, I., Jamroga, W.: Description logic for coalitions. In: AAMAS, pp. 425–432 (2009)

    Google Scholar 

  39. Troquard, N.: Reasoning about coalitional agency and ability in the logics of “bringing-it-about”. Auton. Agents Multi-Agent Syst. 28(3), 381–407 (2014)

    Google Scholar 

  40. Vardi, M.Y.: On epistemic logic and logical omniscience. In: TARK, pp. 293–305 (1986)

    Google Scholar 

  41. Vardi, M.Y.: On the complexity of epistemic reasoning. In: LICS, pp. 243–252 (1989)

    Google Scholar 

  42. Von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)

    Article  Google Scholar 

  43. Wolter, F., Zakharyaschev, M.: On the decidability of description logics with modal operators. In: KR, pp. 512–523 (1998)

    Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Province of Bolzano and DFG through the project D2G2 (DFG grant n. 500249124). Andrea Mazzullo acknowledges the support of the MUR PNRR project FAIR - Future AI Research (PE00000013) funded by the NextGenerationEU. Ana Ozaki is supported by the Research Council of Norway, project number 316022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mazzullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalmonte, T., Mazzullo, A., Ozaki, A., Troquard, N. (2023). Non-Normal Modal Description Logics. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics