Abstract
Text categorization is one of the most important jobs in knowledge retrieval and data mining. This study seeks to investigate several vector space model (VSMs) variants using the K-Nearest Neighbor algorithm (k-NN) method. 242 abstract Arabic documents that they used was utilized in this paper. The comparison is often based on well-known text assessment metrics, recall calculation, precision measurement, and measurement F1. Cosine outperformed in tests conducted on Saudi data sets, according to the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Musleh Al-Sartawi, A.M.A. (eds.): Artificial intelligence for sustainable finance and sustainable technology. In: ICGER 2021. Lecture Notes in Networks and Systems, vol. 423. Springer, Cham (2022)
Sawaf, H., Zaplo, J., Ney, H.: Statistical classification methods for Arabic news articles. In: Arabic Natural Language Processing, Workshop on the ACL’2001. Toulouse, France, July (2001)
Tokunaga, T., Iwayama, M.: Text categorisation based on weighted inverse document frequency. Department of Computer Science, Tokyo Institute of Technology: Tokyo, Japan (1994)
Alhawarat, M., Aseeri, A.O.: A superior Arabic text categorization deep model (SATCDM). IEEE Access 8, 24653–24661 (2020)
Al-Radaideh, Q.A., Al-Abrat, M.A.: An Arabic text categorization approach using term weighting and multiple reducts. Soft Comput 23, 5849–5863 (2019)
Odeh, A., et al.: Arabic text categorization algorithm using vector evaluation method. arXiv preprint arXiv:1501.01318 (2015)
Khreisat, L.: Arabic text classification using n-gram frequency statistics a comparative study. DMIN 2006, 78–82 (2006)
Mohamed, B., Mounir, Z.: Text mining approaches for dependent bug report assembly and severity prediction. Int. Arab J. Inform. Technol. (2022)
Thabtah, F., Hadi, W., Al-Shammare, G.: VSMs with K-nearest neighbour to categorise Arabic text data. In: The World Congress on Engineering and Computer Science 2008, pp. 778–781, 22–44. San Francisco, USA (2008)
Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: An kNN model-based approach and its application in text categorization. In: Proceedings of 5th International Conference on Intelligent Text Processing and Computational Linguistic, CICLing, LNCS 2945, Springer-Verlag, pp. 559–570 (2004)
Alsaleem, S.: Automated Arabic text categorization using SVM and NB. Int. Arab J. e-Technology 2(2) (2011)
Sebastiani, F.: Text categorization. In: Alessandro, Z. (ed.), Text mining and its applications. WIT Press, Southampton, UK, pp. 109–129 (2005)
Syiam, M.M., Fayed, Z.T., Habib, M.B.: An intelligent system for Arabic text categorization. IJICIS 6(1) (2006)
Al-Harbi, S.: Automatic Arabic text classification. JADT 08:9esJournées internationalesd Analysestatistique des Données Textuelles, pp. 77–83 (2008)
Hammo, B., Abu-Salem, H., Lytinen, S., Evens, M.: QARAB: a question answering system to support the Arabic language. In: Workshop on Computational Approaches to Semitic Languages. ACL, Philadelphia, PA, July, pp. 55–65 (2002)
Benkhalifa, M., Mouradi, A., Bouyakhf, H.: Integrating WordNet knowledge to supplement training data in semi- supervised agglomerative hierarchical clustering for text categorization. Int. J. Intel Syst 16(8), 929–947 (2001)
Guo, Y., Shao, Z., Hua, N.: Automatic text categorization based on content analysis with cognitive situation models. Inf. Sci. 180, 613–630 (2010)
Samir, A., Ata, W., Darwish, N.: A new technique for automatic text categorization for Arabic documents. In: 5th IBIMA Conference (The internet & information technology in modern organizations), Cairo, Egypt
Joachims, T.: Text categorisation with support vector machines: learning with many relevant features. In: Proceedings of the European Conference on Machine Learning (ECML), pp. 173–142. Berlin (1998)
El-Halees, A.: Mining Arabic association rules for text classification. In: The Proceedings of the First International Conference on Mathematical Sciences. Al-Azhar University of Gaza, Palestine, 15–17 (2006)
Junker, M., Hoch, R., Dengel, A.: On the evaluation of document analysis components by recall, precision, and accuracy. In: Proceedings of the Fifth International Conference on Document Analysis and Recognition (1999)
Yang, Y.: An evaluation of statistical approaches to text categorization. J. Inf. Retrieval 1(1/2), 67–88 (1999)
Salton, G.: Automatic information organization and retrieval (1968).
Hanandeh, E.S., Awwad, A.A., Khassawneh, Y.: Classify Arabic text using vector space models. In: 2021 22nd International Arab Conference on Information Technology (ACIT). IEEE (2021)
Salton, G., Buckley, C.: Parallel text search methods. Commun. ACM 31(2), 202–215 (1988)
Salton, G., McGill, M.J.: Introduction to modern information retrieval. Mcgraw-Hill (1983)
El-Halees A.: Arabic text classification using maximum entropy the Islamic university journal (Series of Natural Studies and Engineering) 15(1), 157–167 (2007)
El-Kourdi, M., Bensaid, A., Rachidi, T.: Automatic Arabic document categorisation based on the Naïve Bayes algorithm. In: 20th International Conference on Computational Linguistics, August 28th, Geneva (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hanandeh, E., Shajahan, M. (2023). Arabic Text Categorization Algorithm Using Vector Space Model. In: Hannoon, A., Mahmood, A. (eds) Artificial Intelligence, Internet of Things, and Society 5.0. Studies in Computational Intelligence, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-031-43300-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-43300-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43299-6
Online ISBN: 978-3-031-43300-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)