Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetic Algorithm for Program Synthesis

  • Conference paper
  • First Online:
Fundamentals of Software Engineering (FSEN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14155 ))

Included in the following conference series:

  • 151 Accesses

Abstract

A deductive program synthesis tool takes a specification as input and derives a program that satisfies the specification. The drawback of this approach is that search spaces for such correct programs tend to be enormous, making it difficult to derive correct programs within a realistic timeout. To speed up such program derivation, we improve the search strategy of a deductive program synthesis tool, SuSLik, using evolutionary computation. Our cross-validation shows that the improvement brought by evolutionary computation generalises to unforeseen problems.

Y. Nagashima—Independent.

We would like to thank Andreea Costea for preparing additional SuSLik problems for cross-validations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fogel, L., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution (1966)

    Google Scholar 

  2. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  Google Scholar 

  3. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031814

    Chapter  Google Scholar 

  4. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: GamePad: a learning environment for theorem proving. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=r1xwKoR9Y7

  5. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: Deductive synthesis of programs with pointers: techniques, challenges, opportunities. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021, Part I. LNCS, vol. 12759, pp. 110–134. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_5

    Chapter  Google Scholar 

  6. Kaliszyk, C., Chollet, F., Szegedy, C.: HolStep: a machine learning dataset for higher-order logic theorem proving. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=ryuxYmvel

  7. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning of theorem proving. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 8836–8847 (2018). https://proceedings.neurips.cc/paper/2018/hash/55acf8539596d25624059980986aaa78-Abstract.html

  8. Klein, G., Nipkow, T., Paulson, L., Thiemann, R.: The Archive of Formal Proofs (2004). https://www.isa-afp.org/

  9. Koza, J.R.: Genetic Programming - On the Programming of Computers by Means of Natural Selection. Complex Adaptive Systems. MIT Press, Cambridge (1993)

    Google Scholar 

  10. Nagashima, Y.: LiFtEr: language to encode induction heuristics for Isabelle/HOL. In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 266–287. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34175-6_14

    Chapter  Google Scholar 

  11. Nagashima, Y.: Towards evolutionary theorem proving for Isabelle/HOL. In: López-Ibáñez, M., Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech Republic, 13–17 July 2019, pp. 419–420. ACM (2019). https://doi.org/10.1145/3319619.3321921

  12. Nagashima, Y.: Definitional quantifiers realise semantic reasoning for proof by induction. CoRR abs/2010.10296 (2020). https://arxiv.org/abs/2010.10296

  13. Nagashima, Y.: Simple dataset for proof method recommendation in Isabelle/HOL. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 297–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_21

    Chapter  Google Scholar 

  14. Nagashima, Y.: Smart induction for Isabelle/HOL (tool paper). In: 2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, 21–24 September 2020, pp. 245–254. IEEE (2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_32

  15. Nagashima, Y.: Faster smarter proof by induction in Isabelle/HOL. In: Zhou, Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp. 1981–1988. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/273

  16. Nagashima, Y., He, Y.: PaMpeR: proof method recommendation system for Isabelle/HOL. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier, France, 3–7 September 2018, pp. 362–372. ACM (2018). https://doi.org/10.1145/3238147.3238210

  17. Nagashima, Y., Kumar, R.: A proof strategy language and proof script generation for Isabelle/HOL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 528–545. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_32

    Chapter  Google Scholar 

  18. Nawaz, M.Z., Hasan, O., Nawaz, M.S., Fournier-Viger, P., Sun, M.: Proof searching in HOL4 with genetic algorithm. In: Hung, C., Cerný, T., Shin, D., Bechini, A. (eds.) SAC 2020: The 35th ACM/SIGAPP Symposium on Applied Computing, online event, [Brno, Czech Republic], March 30–April 3 2020, pp. 513–520. ACM (2020). https://doi.org/10.1145/3341105.3373917

  19. Polikarpova, N., Sergey, I.: Structuring the synthesis of heap-manipulating programs. Proc. ACM Program. Lang. 3(POPL), 72:1–72:30 (2019). https://doi.org/10.1145/3290385

  20. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. IEEE Trans. Neural Netw. 9(5), 1054–1054 (1998). https://doi.org/10.1109/TNN.1998.712192

  21. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assistants. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019. Proceedings of Machine Learning Research, vol. 97, pp. 6984–6994. PMLR (2019). http://proceedings.mlr.press/v97/yang19a.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Nagashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagashima, Y. (2023). Genetic Algorithm for Program Synthesis. In: Hojjat, H., Ábrahám, E. (eds) Fundamentals of Software Engineering. FSEN 2023. Lecture Notes in Computer Science, vol 14155 . Springer, Cham. https://doi.org/10.1007/978-3-031-42441-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42441-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42440-3

  • Online ISBN: 978-3-031-42441-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics