Abstract
A graph is planar if it can be drawn or embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. A plane graph is a planar graph with a fixed planar embedding in the plane. A drawing problem X for a plane graph G asks to determine whether G has a drawing D satisfying a set P of given properties and to find D if it exists. The corresponding problem for a planar graph G asks to determine whether G has a planar embedding \(\varGamma \) such that \(\varGamma \) has a drawing D satisfying the set P of properties and find D if it exists. If every embedding of G has a drawing D satisfying P, then the problem is trivial, i.e., the problem for plane graphs and that for planar graphs are the same. Otherwise, the problem for planar graphs becomes difficult even if an efficient solution of the problem for a plane graph exists since a planar graph may have an exponential number of planar embeddings. Various techniques are found in literature that are used to solve the drawing problems for planar graphs. In this paper we review three of the widely used techniques, namely, (i) reduction to planarity testing, (ii) incremental modification and (iii) SPQR-tree decomposition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelini, P., et al.: Testing planarity of partially embedded graphs. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 202–221. SIAM (2010)
Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)
Angelini, P., Di Battista, G., Patrignani, M.: Finding a minimum-depthembedding of a planar graph in O(\(n^4\)) time. Algorithmica 60(4), 890–937 (2011)
Angelini, P., et al.: Monotone drawings of graphs with fixed embedding. Algorithmica 71(2), 233–257 (2015)
Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5(1–4), 93–109 (1990)
Boyer, J.M., Cortese, P.F., Patrignani, M., Di Battista, G.: Stop minding your P’s and Q’s: implementing a fast and simple DFS-based planarity testing and embedding algorithm. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_3
Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)
Chang, Y.J., Yen, H.C.: On bend-minimized orthogonal drawings of planar 3-graphs. In: Proceedings of 33rd International Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. Prog. Graph Theory 173, 153–173 (1984)
De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)
Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998)
Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)
Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. arXiv preprint, arXiv:1910.11782 (2019)
Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings in quadratic time. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 481–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_34
Garg, A., Tamassia, R.: A new minimum cost flow algorithm with applications to graph drawing. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–216. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3_49
Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)
Haeupler, B., Tarjan, R.E.: Planarity algorithms via PQ-trees. Electron. Notes Discret. Math. 31, 143–149 (2008)
Hasan, M.M., Rahman, M.S.: No-bend orthogonal drawings and no-bend orthogonally convex drawings of planar graphs (extended abstract). In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 254–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_21
Hasan, M.M., Rahman, M.S., Karim, M.R.: Box-rectangular drawings of planar graphs. J. Graph Algorithms Appl. 17(6), 629–646 (2013)
Hong, S., Tokuyama, T.: Algorithmics for beyond planar graphs. In: NII Shonan Meeting Seminar, no. 27, pp. 51–63 (2016)
Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(4), 549–568 (1974)
Hossain, M., Mondal, D., Rahman, M., Salma, S.: Universal line-sets for drawing planar 3-trees. J. Graph Algorithms Appl. 17(2), 59–79 (2013)
Hossain, M.I., Rahman, M.S.: Good spanning trees in graph drawing. Theor. Comput. Sci. 607, 149–165 (2015)
Hossain, M.I., Rahman, M.S.: Straight-line monotone grid drawings of series-parallel graphs. Discrete Math. Algorithms Appl. 7(02), 1550007 (2015)
Mehlhorn, K., Mutzel, P.: On the embedding phase of the hopcroft and tarjan planarity testing algorithm. Algorithmica 16(2), 233–242 (1996)
Nishizeki, T., Rahman, M.S.: Planar Graph Drawing, vol. 12. World Scientific Publishing Company, Singapore (2004)
Rahman, M.S.: Basic Graph Theory. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49475-3
Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE Trans. Inform. Syst. 88(1), 23–30 (2005)
Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular grid drawings of plane graphs. Comput. Geom. 10(3), 203–220 (1998)
Rahman, M.S., Nakano, S., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. Graph Algorithms Appl. 3, 31–62 (1999)
Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular drawings of plane graphs without designated corners. Comput. Geom. 21(3), 121–138 (2002)
Rahman, M.S., Nishizeki, T.: Bend-minimum orthogonal drawings of plane 3-graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 367–378. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3_32
Rahman, M.S., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. J. Algorithms 50(1), 62–78 (2004)
Samee, M.A.H., Alam, M.J., Adnan, M.A., Rahman, M.S.: Minimum segment drawings of series-parallel graphs with the maximum degree three. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 408–419. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9_40
Samee, M.A.H., Rahman, M.S.: Upward planar drawings of series-parallel digraphs with maximum degree three. In: Proceedings of WALCOM 2007, pp. 28–45. Bangladesh Academy of Sciences (2007)
Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. Society for Industrial and Applied Mathematics (1990)
Shih, W.K., Hsu, W.L.: A new planarity test. Theor. Comput. Sci. 223(1), 179–192 (1999)
Sultana, S., Rahman, M.S., Roy, A., Tairin, S.: Bar 1-visibility drawings of 1-planar graphs. In: Gupta, P., Zaroliagis, C. (eds.) ICAA 2014. LNCS, vol. 8321, pp. 62–76. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04126-1_6
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)
Thomassen, C.: Planarity and duality of finite and infinite graphs. J. Comb. Theory Ser. B 29(2), 244–271 (1980)
Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory. Academic Press, New York (1984)
Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 3(1), 304–320 (1960)
Acknowledgement
We thank Debajyoti Mondal and Shin-ichi Nakano for their useful comments on the manuscript of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rahman, M.S., Karim, M.R. (2020). Drawing Planar Graphs. In: Rahman, M., Sadakane, K., Sung, WK. (eds) WALCOM: Algorithms and Computation. WALCOM 2020. Lecture Notes in Computer Science(), vol 12049. Springer, Cham. https://doi.org/10.1007/978-3-030-39881-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-39881-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39880-4
Online ISBN: 978-3-030-39881-1
eBook Packages: Computer ScienceComputer Science (R0)